
Quest® Archive Manager 5.9.1

Installation and Configuration Guide for
Exchange

© 2022 Quest Software Inc.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a
software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the
applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use without the written
permission of Quest Software Inc.

The information in this document is provided in connection with Quest Software products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest
Software products. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE
AGREEMENT FOR THIS PRODUCT, QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO
EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN
IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the
right to make changes to specifications and product descriptions at any time without notice. Quest Software does not make any
commitment to update the information contained in this document.

If you have any questions regarding your potential use of this material, contact:

Quest Software Inc.
Attn: LEGAL Dept.
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our website (www.quest.com) for regional and international office information.

Patents

Quest Software is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current
information about applicable patents for this product, please visit our website at www.quest.com/legal.

Trademarks

Quest Software, Quest, and the Quest logo are trademarks and registered trademarks of Quest Software Inc. in the U.S.A. and
other countries. For a complete list of Quest Software trademarks, please visit our website at www.quest.com/legal. All other
trademarks, servicemarks, registered trademarks, and registered servicemarks are the property of their respective owners.

Archive Manager Installation and Configuration Guide for Exchange
Updated - May 2022
Software Version - 5.9.1

Legend

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data if instructions are not followed.

IMPORTANT, NOTE, TIP, MOBILE, or VIDEO: An information icon indicates supporting information.

http://www.quest.com
http://www.quest.com/legal

Archive Manager 5.9.1 Installation and Configuration Guide for Exchange
Contents

3

SDK reference . 4

Overview . 4

Namespaces . 4

SDK usage . 4

SDK collections . 6

Message creation . 7

Attachment creation . 7

Embedded messages . 8

Extended properties . 8

About us . 9

Contents

1

SDK reference

• Overview

• Namespaces

• SDK usage

• SDK collections

• Message creation

• Attachment creation

• Embedded messages

• Extended properties

Overview
The Archive Manager SDK allows 3rd party application developers to interface with the archive for creation and
retrieval of content and information. The Archive Manager SDK provides a high-level .NET class library that
communicates with the Archive Manager RESTful Web Service API. SDK code documentation can be found in the
Quest.AM.Public.Documentation.chm file.

Namespaces
There are three general SDK namespaces: Interfaces, Models, and Objects. Models and Objects implement the
interfaces within the Interfaces namespace. Each class in the Objects namespace derives from a class in the
Models namespace. Models are the base data classes that contain the properties that define the data type you are
accessing. Objects are active types that have navigation, collections, and special properties that further describe
relationships of a given Object to other Objects. Think of this as a three layer system where Interfaces are the
Model and Object definitions, Models are the data storage, and Objects are the Model access.

The types and interfaces included in Quest.AM.Public and Quest.AM.Public.Interfaces are shared between the
internal system and the SDK. These types are used when creating new messages or accessing certain message
properties.

SDK usage
The primary Object is a class implementation of the ISDKInstance interface called ArchiveManager. The
ArchiveManager class describes the Archive Manager RESTful Web Service API endpoint to which you are
talking. The constructor takes a base URL and application name.

ISDKInstance archiveManager = new ArchiveManager("http://archivemanager/",
 "Archive Manager Example Application");
ISDKLogin login = archiveManager.Login("Admin", "Password", "DEFAULT", false);
Archive Manager 5.9.1 Installation and Configuration Guide for Exchange
SDK reference

4

ISDKMailbox myMailbox = login.PrimaryMailbox;

ISDKMailboxCollection myMailboxes = login.Mailboxes;

Login must be called to authenticate to the endpoint. It will return the ISDKLogin Object for the authenticated user
f successful. The ISDKLogin Object contains a property for the login’s primary mailbox and a collection of
mailboxes the login has delegated to it. The last argument changes the authentication mode to either Basic or
Windows authentication. If the API endpoint is configured for Anonymous authentication, this argument should be
set to false. If the API endpoint is configured for Windows authentication, this argument should be set to true.
Passing a null username causes the application to authenticate as the user executing the application.

There is a collection Object for each of the primary types. In this example, ISDKMailboxCollection myMailboxes
contains an enumerable property called “Items” that can be used to access each of the individual ISDKMailbox
Objects within the collection.

foreach (ISDKMailbox mailbox in myMailboxes.Items)
{

String mailboxName = mailbox.Name;

}

The SDK consists of many relationships branching from the ArchiveManager Object. All of the SDK Objects start
with SDK followed by the Model for which they provide navigation. For example, SDKMailbox is the access
Object for the Mailbox Model. The Mailbox Model contains the property data related to the mailbox, but cannot
navigate to mailbox folders or mailbox messages. The SDKMailbox Object contains relationship access
properties to allow navigation to an ISDKFoldersCollection Object or ISDKMessagesCollection Object.

Each ISDKCollection provides a GetCount() method that can be used to retrieve the count of the collection
without a full enumeration. Using Linq extensions such as Count() or Where() on the Items enumerable can
cause performance issues because they operate on the entire collection, causing the yielded self-filling
enumerable to be fully retrieved and processed locally. Using the ISDKCollection.GetCount() method performs a
SQL query to calculate the number of records, and is far less expensive than retrieving all records.

ISDKMailbox testMailbox =
archiveManager.Mailboxes.Items.FirstOrDefault(mb => mb.Name == "TestMailbox");

ISDKFolderCollection folders = testMailbox.Folders;

foreach (ISDKFolder folder in folders.Items)
{

ISDKMessageCollection messages = folder.Messages;
foreach (ISDKMessageSummary messageSummary in messages.Items)
{

ISDKMessage fullMessage = messageSummary.Email;
String subject = fullMessage.Subject;
IList<IAttachment2> attachments = fullMessage.Attachments;
IList<IEmailAddress2> to = fullMessage.To;

}
}

Any time an Object property is used, the SDK reissues the request for the data. In most cases, you will want to
store the data you wish to access in its own variable to reduce sub requests while using Linq. For example, the
following code would cause a new lookup for MyLogin for each item in the Mailboxes collection and would cause
extra bandwidth to be used.

}

ISDKMailbox testMailbox =
archiveManager.Mailboxes.Items.FirstOrDefault(mb => mb.OwnerLoginId ==

archiveManager.MyLogin.Id);

Each time archiveManager.MyLogin.Id is evaluated, a request for MyLogin will be executed first. The more
efficient way to perform this Linq lookup is to store MyLogin in an ISDKLogin Object. This way the evaluation of
the ISDKLogin Id property does not cause a new request to lookup MyLogin.

ISDKLogin myLogin = archiveManager.MyLogin;
ISDKMailbox testMailbox =

archiveManager.Mailboxes.Items.FirstOrDefault(mb => mb.OwnerLoginId == myLogin.Id);
Archive Manager 5.9.1 Installation and Configuration Guide for Exchange
SDK reference

5

The SDK Objects contain methods to Refresh or Save. This allows you to make changes to an object and save or
revert changes by calling Save or Refresh. Certain properties cannot be change and calling Save may throw an
exception.

//User1
String displayName = myLogin.DisplayName;
myLogin.DisplayName = "New Display Name";
myLogin.Refresh();
//User1
displayName = myLogin.DisplayName;
myLogin.DisplayName = "Another New Display Name";
myLogin.Save();
//Another New Display Name
displayName = myLogin.DisplayName;

SDK collections
SDKCollection Objects contain methods to Add, AddByRef, RemoveByRef, and New. The Add method allows
you to create a new Object within the collection. In this case, the Add method only cares about the model data so
it would require a model interface.

ISDKFolderCollection folders = testMailbox.Folders;
IFolder newFolder = new Folder();
newFolder.MailBoxId = testMailbox.Id;
newFolder.Name = "FolderName";
newFolder.Visible = true;

folders.Add(newFolder);

Using the AddByRef and RemoveByRef allows you to link and unlink by object ID. Each type will have an
associated ID property that can be used to link into a given type collection. For example, you could add a folder to
the Subfolders collection of another folder to build hierarchy.

ISDKFolderCollection folders = testMailbox.Folders;
ISDKFolder testFolder = folders.Items.FirstOrDefault(f => f.Name == "TestFolder");
ISDKFolder testFolder2 = folders.Items.FirstOrDefault(f => f.Name == "TestFolder2");

testFolder.Subfolders.AddRef(testFolder2.Id);

The New method returns an empty Model for convenience. Once you “Add” the Model to a collection, the Add
method will return an SDK version ready for navigation. The ID field and other relevant links are populated.

ISDKFolderCollection folders = testMailbox.Folders;

IFolder newFolder = new Folder();
newFolder.MailBoxId = testMailbox.Id;
newFolder.Name = "FolderName";
newFolder.Visible = true;
ISDKFolder newSDKFolder = folders.Add(newFolder);

int newFolderId = newSDKFolder.Id;
//ownerMailboxId == testMailbox.Id
int ownerMailboxId = newSDKFolder.MailBoxId;
//0 for top level folder

int parentFolderId = newSDKFolder.ParentFolderId;
Archive Manager 5.9.1 Installation and Configuration Guide for Exchange
SDK reference

6

Message creation
Messages are constructed using the Message and Attachment Models. These Models implement interfaces
found in the Quest.AM.Public.Interfaces and require some types from Quest.AM.Public. Messages and
attachments have many properties. Most are metadata that is not required. The following is an example of
populating the general Message fields.

IMessage message = new Message();
message.Attachments = new List<IAttachment2>();
message.From = new EmailAddress("DisplayName", "Email@Address.com");
message.To = new List<IEmailAddress2>();
message.To.Add(new EmailAddress("DisplayName", "Email@Address.com"));
message.CC = new List<IEmailAddress2>();
message.BCC = new List<IEmailAddress2>();
message.MessageClass = "IPM.Note";
message.BodyCodePage = 65001;
message.BodyFormat = BodyFormat.Text;
message.DateSent = DateTime.MinValue;
message.DateReceived = DateTime.MaxValue;
//Internet Message-ID as defined by RFC5322 section 2.2
message.Header = "2C257C1D6C0466419D1E46B7EB0EE3120FEB2702@ESCMail.esc.quest.local";
//Low = 0, Normal = 1, High = 2
message.Importance = 1;
//None = 0, Personal = 1, Private = 2, CompanyConfidential = 3
message.Sensitivity = 0;
//Message = 1, Calendar = 2, DeliveryStatusNotification = 3, Contact = 4
message.MessageTypeID = 1;
//Internet Message-ID as defined by RFC5322 section 3.6.4
message.OrigionalMessageID = "InternetMessageID";
//Important when embeding email as attachments, always set to Email;
message.PartType = EmailPartType.Email;
//Total number of bytes
message.Size = 500;
message.Subject = "Message Subject";
//ConversationIndex as defined by Microsoft E-Mail Object Protocol Specification
//[MS-OXOMSG] PidTagConversationIndex Base64 encoded value,
//otherwise RFC2822 section 3.6.4 describes In-Reply-To and References headers
message.ThreadIndex = "AQHNjQWAdEBzhLInT0yR5EYT63xljA==";
//ConversationTopic as defined by Microsoft E-Mail Object Protocol Specification
//[MS-OXOMSG] PidTagConversationTopic, typically the message original subject

message.ThreadTopic = "Message Subject";

Body elements are provided as a Stream type using the StreamAsIDataStream2 wrapper class. The Constructor
contains a few fields that are for internal use only at the moment. The important fields will be the stream with the
content, the DataStreamPartType, and the stream length.

MemoryStream bodyStream = new MemoryStream();
message.Body = new StreamAsIDataStream2(DataStreamPartType.Body, null, Guid.Empty,

false, bodyStream, false, 0, bodyStream.Length);

Attachment creation
Attachments are added to the message’s Attachments collection. An Attachment contains many meta-properties
used to describe the attachment, but not all are required.

Attachment attachment = new Attachment();
attachment.Name = "Attachment";
Archive Manager 5.9.1 Installation and Configuration Guide for Exchange
SDK reference

7

attachment.FileName = "Attachment.docx";
attachment.ContentType = "application";
attachment.ContentSubType = "docx";
attachment.ContentDescription = "Attachment Description";

attachment.PartType = EmailPartType.Attachment;

The attachment stream is also uses the StreamAsIDataStream2 wrapper class. The property StreamType needs
to be set based on the type of attachment it is. In this case, ByValue for an actual attachment file.

//ByValue = 2, EmbeddedMsg = 6, OLE = 7
attachment.StreamType = 2;

MemoryStream attachmentData = new MemoryStream();
attachment.Size = attachmentData.Length;
attachment.Data = new StreamAsIDataStream2(DataStreamPartType.AttachData, null,

Guid.Empty, false, attachmentData, false, 0, attachmentData.Length);

Embedded messages
Attaching messages as embedded messages can be done by assigning the message object to the Data property
of the attachment. Setting the StreamType to 6 for EmbeddedMsg will allow the parser to properly handle the
embedded message.

IMessage message = new Message();
//ByValue = 2, EmbeddedMsg = 6, OLE = 7
attachment.StreamType = 6;
attachment.Size = message.Size;
attachment.Data = message;

Extended properties
Certain message types may contain extended properties and can be added to the message SourceProperties
property. For example, we can add the property “Task.StartTime” to the message. These extended properties
require special formatting and encoding. A method was provided at the instance level to attach the properties to a
message.

IMessage message = new Message();
MessageSourceProperties messageProperties = new MessageSourceProperties();
messageProperties.Add(new MessageSourceProperty("Task.StartTime", DateTime.Now,
SourcePropDataType.DateTime));

archiveManager.EncodeSourceProperties(messageProperties, message);
Archive Manager 5.9.1 Installation and Configuration Guide for Exchange
SDK reference

8

About us
Quest provides software solutions for the rapidly-changing world of enterprise IT. We help simplify the challenges
caused by data explosion, cloud expansion, hybrid datacenters, security threats, and regulatory requirements. We
are a global provider to 130,000 companies across 100 countries, including 95% of the Fortune 500 and 90% of
the Global 1000. Since 1987, we have built a portfolio of solutions that now includes database management, data
protection, identity and access management, Microsoft platform management, and unified endpoint management.
With Quest, organizations spend less time on IT administration and more time on business innovation. For more
information, visit www.quest.com.

Technical support resources
Technical support is available to Quest customers with a valid maintenance contract and customers who have trial
versions. You can access the Quest Support Portal at https://support.quest.com.

The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours a
day, 365 days a year. The Support Portal enables you to:

• Submit and manage a Service Request.

• View Knowledge Base articles.

• Sign up for product notifications.

• Download software and technical documentation.

• View how-to-videos.

• Engage in community discussions.

• Chat with support engineers online.

• View services to assist you with your product.
Archive Manager 5.9.1 Installation and Configuration Guide for Exchange
About us

9

https://support.quest.com
https://www.quest.com/company/contact-us.aspx

	SDK reference
	Overview
	Namespaces
	SDK usage
	SDK collections
	Message creation
	Attachment creation
	Embedded messages
	Extended properties

	About us
	Technical support resources

