
Quest® InTrust 11.3.2

SDK Reference

© 2019 Quest Software Inc. ALL RIGHTS RESERVED.
This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a
software license or nondisclosure agreement. This softwaremaybe used or copied only in accordance with the termsof the
applicable agreement. No part of this guidemaybe reproduced or transmitted in any form or byanymeans, electronic or
mechanical, including photocopying and recording for anypurpose other than the purchaser’s personal use without the written
permission of Quest Software Inc.

The information in this document is provided in connection with Quest Software products. No license, expressor implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest Software
products. EXCEPT ASSET FORTH IN THETERMSANDCONDITIONSASSPECIFIED IN THELICENSEAGREEMENT FOR
THISPRODUCT, QUEST SOFTWAREASSUMESNOLIABILITYWHATSOEVER ANDDISCLAIMSANYEXPRESS, IMPLIED
OR STATUTORYWARRANTYRELATINGTO ITSPRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTYOF MERCHANTABILITY, FITNESSFOR APARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NOEVENT
SHALLQUEST SOFTWAREBELIABLEFOR ANYDIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIALOR
INCIDENTALDAMAGES (INCLUDING,WITHOUT LIMITATION, DAMAGESFOR LOSSOF PROFITS, BUSINESS
INTERRUPTIONOR LOSSOF INFORMATION) ARISINGOUT OF THEUSEOR INABILITYTOUSETHISDOCUMENT,
EVEN IF QUEST SOFTWAREHASBEEN ADVISEDOF THEPOSSIBILITYOF SUCHDAMAGES. Quest Softwaremakesno
representationsor warrantieswith respect to the accuracyor completenessof the contents of this document and reserves the right
to make changes to specificationsand product descriptionsat any time without notice. Quest Software doesnot make any
commitment to update the information contained in this document.

If you have anyquestions regarding your potential use of thismaterial, contact:

Quest Software Inc.

Attn: LEGALDept

4 PolarisWay

Aliso Viejo, CA 92656

Refer to our Web site (https://www.quest.com) for regional and international office information.

Patents
Quest Software is proud of our advanced technology. Patents and pending patentsmayapply to this product. For themost current
information about applicable patents for this product, please visit our website at https://www.quest.com/legal.

Trademarks
Quest, the Quest logo, and Join the Innovation are trademarksand registered trademarksof Quest Software Inc. For a complete
list of Quest marks, visit https://www.quest.com/legal/trademark-information.aspx. All other trademarksand registered trademarks
are property of their respective owners.

Legend
CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data if instructions
are not followed.

IMPORTANT, NOTE, TIP,MOBILE, or VIDEO: An information icon indicates supporting information.

InTrust SDK Reference
Updated - September 2018
Version - 11.3.2

https://www.quest.com/
https://www.quest.com/legal
https://www.quest.com/legal/trademark-information.aspx

Contents

InTrust SDK Overview 6
Requirements 6
Required Permissions 7
Standalone Setup 7
Configuring C#References 7
First Steps 7

Repository Services API 8
Connecting to a Repository 8
Overview of Repository Access 8
Examples 10
Details 10

Getting and Putting Data 10
Overview 11
Writing 11
Reading 12
Getting Records 13
Example (C#) 14

Getting Events 14
Example (C#) 14
Composing REL Queries 15
Searchable Event and Record Fields 16

Writing Records 19
Approach 1: WritingWhole Record Structures 19
Approach 2: Splitting Records forWriting 19
Example (C#) 20

Writing Events 25
Sort Order forWriting 26
Out-of-OrderWriting 26

Repository Record Data Structures 26
tags 26
contents 27
contents2 28
record 29
record2 29
Recommendations on Setting Tags 29

Event Record Data Structures 30
base_event 30
event_with_read_extensions 31
named_string 31
insertion_string 31

InTrust 11.3.2 SDK Reference 3

augmented_insertion_string 31
event_with_extensions 32
event_with_extensions2 32
resolved_string 32

Creating and Removing Repositories 34
Working with Repository Properties 34
Using Custom Attributes 34
Example (C#) 35

Using Forwarding Properties 35
Getting Started with Repository Services API 37
Testing Repository Searching 37
Testing Event Writing 37
Next Steps 38

Log Knowledge Base API 39
Example 39
Log Transformation Rule Format 42

Interfaces 44
IBulkEventWithReadExtensions 46

Method 46
IBulkRecord 46

Method 47
IBulkRecord2 47

Method 47
ICookie 47

Method 48
IEventToRecordFormatter 48

Method 48
IIdleRepository 48

Method 49
IIdleRepositoryFactory 49

Method 49
IIndexManager 50

Methods 50
IIndexManagerFactory 50

Methods 50
IInTrustEnvironment 52

Methods 52
IInTrustEventory 53

Methods 53
IInTrustEventoryItem 54

Methods 54
IInTrustEventoryItemCollection 55

Methods 55

InTrust 11.3.2 SDK Reference 4

IInTrustOrganization 57
Methods 57

IInTrustOrganizationCollection 58
Methods 58

IInTrustRepository 59
Methods 59

IInTrustRepositoryCollection 62
Methods 63

IInTrustRepositorySearcher 65
Method 65

IInTrustServer 65
Methods 66

IInTrustServerCollection 66
Methods 66

IMultiRepositorySearcher 67
Methods 67

IMultiRepositorySearcherFactory 68
IObservable 68

Method 69
IObserver 69

Methods 69
IProperty 70

Methods 70
IPropertyCollection 72

Methods 72
IRepositoryRecordInserter 73

Methods 73
IRepositoryRecordInserterLight 75

Method 75

About us 76
Contacting Quest 76
Technical support resources 76

InTrust 11.3.2 SDK Reference 5

InTrust SDK Overview
The InTrust SDK makes InTrust functionality available to applications. At this time, the SDK includes the
following components:

l Repository Services API

l Log Knowledge Base API

The InTrust SDK is included in the InTrust Server component and works on any computer where InTrust Server
is deployed.

Requirements
If you want to install the SDK separately from InTrust Server, the computer must meet the following requirements
(similar to the requirements for InTrust Server):

Architecture x64

Operating System Any of the following:

l Microsoft Windows Server 2016

l Microsoft Windows Server 2012 R2

l Microsoft Windows Server 2012

l Microsoft Windows Server 2008 R2

Memory Min. 6GB

Additional Software and
Services

l Microsoft .NET Framework 4.5 with all the latest updates

l Update for Universal C Runtime in Windows,
available from https://support.microsoft.com/en-us/kb/2999226 at the
time of this writing

CAUTION: To use the InTrust API with old versions of Windows PowerShell (2.0 and earlier), make
sure you configure PowerShell to use the version of the .NET runtime that the SDK requires. For
that, create the powershell.exe.config (or powershell_ise.exe.config) file in the same folder as
powershell.exe (or powershell_ise.exe) file with content like the following:

<?xml version="1.0"?>
<configuration>
 <startup useLegacyV2RuntimeActivationPolicy="true">
 <supportedRuntime version="v4.0"/>
 <supportedRuntime version="v2.0.50727"/>
 </startup>
</configuration>

InTrust 11.3.2 SDK Reference
InTrust SDK Overview

6

https://support.microsoft.com/en-us/kb/2999226

Required Permissions
To be able to use the features of the InTrust SDK, your code must be run under an account that is listed as an
InTrust organization administrator. For details about setting up this privilege, see InTrust Organization
Administrators.

Standalone Setup
To install the InTrust SDK separately from InTrust Server, run the INTRUST_SDK.11.3.2.*.*.msi installation
package provided to you. It is located in the InTrust\Server folder in your InTrust distribution.

Configuring C# References
To make sure that C# bindings work, enable references to the following COM type libraries:

1. InTrust Environment 1.0 Type Library

2. Repository Record Inserter 1.0 Type Library

3. Repository Services 1.0 Type Library

For each of them, open the properties and set the Embed Interop Types parameter to False.

First Steps
To verify that InTrust SDK works and get your first test results, see Getting Started with Repository Services API.

InTrust 11.3.2 SDK Reference
InTrust SDK Overview

7

http://support.quest.com/technical-documents/intrust/[%25=CommonVariables.Version%25]/deployment-guide/intrust-configuration/configuring-access-rights/intrust-organization-administrators
http://support.quest.com/technical-documents/intrust/[%25=CommonVariables.Version%25]/deployment-guide/intrust-configuration/configuring-access-rights/intrust-organization-administrators

Repository Services API
This topic describes the API that InTrust provides for repositories. This API lets you do the following:

l Connect to a repository for searching and writing

l Get records from a repository by searching

l Put records in a repository

l Manage repositories:

o Remove (unregister) them

o Create them

o Work with repository properties

The API is implemented as a collection of COM objects that become available after you have installed the
InTrust SDK. Use the interfaces described in the topics listed below; call the methods of those interfaces for
access to records and repositories.

l Connecting to a Repository

l Getting Records

l Writing Records

l Creating and Removing Repositories

l Repository Record Data Structures

l Event Record Data Structures

l Working with Repository Properties

l Interfaces

Connecting to a Repository
Use the interfaces listed below for access to an InTrust repository. Once you have gained access, you can
search for records in the repository (see Getting Records) and write records to it (see Writing Records).

Overview of Repository Access
The following diagram shows the relationships between the InTrust SDK's interfaces used for getting access to a
repository. An arrow indicates that an interface returns another interface.

InTrust 11.3.2 SDK Reference
Repository Services API

8

Before you can have access to an InTrust repository, you need to initialize the InTrust environment. For
that, create an object that implements the IInTrustEnvironment interface. This object makes the current
InTrust organization, its servers and its repositories available to you. The relationships between these
items are as follows:

l An InTrust organization provides a single configuration database for one or more InTrust servers.

l An InTrust repository is registered with an InTrust organization, and its entry is contained in the
configuration shared by all InTrust servers in the organization.

l Specific InTrust servers manage specific repositories but do not “own” them; however, the
organization does.

The IInTrustEnvironment interface provides the environment for working with all available InTrust organizations.
You can use two methods to get the organization you need:

1. Get a collection of known organizations (Organizations method of the IInTrustEnvironment interface)
and pick the necessary one. This involves working with the IInTrustOrganizationCollection interface. In
this case, organizations are discovered by an Active Directory query.

2. Connect directly to an InTrust server by name (ConnectToServer method of the IInTrustEnvironment
interface). This involves working with the IInTrustServer interface, which you can use to get the
organization that the server is in.

Once you have gained access to an organization, use its interface (IInTrustOrganization) to get a collection of
the repositories in it (IInTrustRepositoryCollection) and get the repository you are looking for
(IInTrustRepository).
The information above concerns access to regular production repositories. However, a valid file structure with
data can also act as an InTrust repository for the purposes of searching and writing, even if it is not included in
InTrust configuration. It is called an idle repository. An idle repository has no representation in the InTrust
environment, so you need to construct its interface to gain access. For details, see Creating and Removing
Repositories.

InTrust 11.3.2 SDK Reference
Repository Services API

9

Examples
If you know the name of the organization for a specific repository, follow the organization → repository
chain of access:

{
IInTrustEnvironment intrust_environment = new InTrustEnvironment();
IInTrustOrganizationCollection organizations = intrust_

environment2.Organizations;
IInTrustOrganization intrust_organization =

organizations.Cast<IInTrustOrganization>().Where(x => x.Name == "My
Organization").First();

IInTrustRepositoryCollection repositories = intrust_
organization.Repositories;

IInTrustRepository repository = repositories.Cast<IInTrustRepository>
().Where(x => x.Name == "My Repository").First();
}

If you only know the name of a server in the organization, follow the server → organization → repository
chain of access:

{
IInTrustEnvironment intrust_environment = new InTrustEnvironment();
IInTrustServer intrust_server = intrust_environment.ConnectToServer("My

Server");
IInTrustOrganization intrust_organization = intrust_server.Organization;
IInTrustRepositoryCollection repositories = intrust_organization.Repositories;
IInTrustRepository repository = repositories.Cast<IInTrustRepository>().Where(x

=> x.Name == "My Repository").First();
}

Details
Use the following interfaces for repository access and related tasks:

l IInTrustEnvironment

l IInTrustOrganizationCollection

l IInTrustOrganization

l IInTrustServerCollection

l IInTrustServer

l IInTrustRepositoryCollection

l IInTrustRepository

Getting and Putting Data
The InTrust repository was originally developed to store event log data, and this dictated the design choices that
it is based on. However, the repository architecture is flexible enough for storing generic records containing
arbitrary key-value pairs. The repository API provides tools for reading and writing both kinds of data.

InTrust 11.3.2 SDK Reference
Repository Services API

10

Importantly, the repository is a document-oriented store. If you need to implement any inter-document
relationships, you need to define them at the document contents level.

Overview
The following diagram shows the relationships between the InTrust SDK's interfaces used for reading and
writing repository data. An arrow indicates that an interface returns another interface. Dashed lines between
interfaces mean they don't return one another, but are used together for particular tasks.

See below for details about building program flow that uses these relationships. For a diagram of how to obtain
the IInTrustRepository interface, see Connecting to a Repository.

Writing
Whether you want to write generic records or events, first you need access to the IRepositoryRecordInserter
interface. Take the following steps:

InTrust 11.3.2 SDK Reference
Repository Services API

11

1. Connect to the repository you need, as described in Connecting to a Repository.

2. Get the IRepositoryRecordInserter interface.
This interface manages the writing of data to a repository. To obtain it, call the Inserter method of the
IInTrustRepository interface of the repository you are connected to. A new inserter is created every time
you make this call. You should obtain it once and reuse it for all writing to the repository.

For details about the next steps, see the following topics:

l Writing Records

l Writing Events

Reading
Reading data from a repository means searching the repository for it. Search queries use the REL language
described in InTrust Customization Kit. For a list of fields that you can use in search queries, see Searchable
Event and Record Fields. For some important REL query specifics, see Composing REL Queries.
The data-retrieving functionality of the InTrust repository API is modeled after the push-based notification system
used in the Microsoft .NET Framework. Therefore, the API provides similar interfaces (such as IObservable and
IObserver).

To perform a repository search

1. Connect to the repository you need, as described in Connecting to a Repository. This gives you access
to the IInTrustRepository interface.

2. Use the Searcher method of the IInTrustRepository interface to get the
IInTrustRepositorySearcher interface.

3. Use that interface's Searchmethod to get an IObservable interface.

4. Subscribe to the notification using the IObserver interface.

Example of a helper function (C#):

static void search_events(IInTrustRepository intrust_repository, string
query)
{

IObservable observable = intrust_repository.Searcher().Search(query);
MyObserver observer = new MyObserver();
observable.Subscribe(observer, out observer.m_cookie);

}

The repository API also provides a way to perform searches on multiple repositories simultaneously. The
IMultiRepositorySearcher interface is provided for this purpose.

To perform a multi-repository search

1. Obtain the IInTrustRepositorySearcher interfaces for the repositories you need.

2. Construct a IMultiRepositorySearcher interface using the IMultiRepositorySearcherFactory interface.

3. In the newly-created interface, specify the interfaces from the first step using the
MakeMultiSearchObject method.

4. Use the returned interface as a regular IInTrustRepositorySearcher interface, as described above.

Example of a multi-repository search:

InTrust 11.3.2 SDK Reference
Repository Services API

12

https://support.quest.com/technical-documents/intrust/11.3.2/Customization Kit/

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("10.30.38.230");
IInTrustOrganization org = server.Organization;
IInTrustEventory evs = org.Eventory;
string eventory_str = evs.Eventory;
IMultiRepositorySearcherFactory multi_searcher_fac = new
MultiRepositorySearcherFactory();
IMultiRepositorySearcher multi_searcher = multi_searcher_
fac.CreateMultiRepositorySearcher(eventory_str);

The example above involves an explicitly specified log knowledge base (see Log Knowledge Base API for
details). To use the default log knowledge base, rewrite it as follows:

IMultiRepositorySearcherFactory multi_searcher_fac = new
MultiRepositorySearcherFactory();
IMultiRepositorySearcher multi_searcher = multi_searcher_
fac.CreateMultiRepositorySearcher(null);

For details about the next steps, see the following topics:

l Getting Records

l Getting Events

The following interfaces are involved in repository searches:

l IObservable
Enables push-based notification. Implement this interface as the source of discovered records.

l IObserver
Gets push-based notifications. Implement this interface as the search result handler.

l ICookie
Keeps a search active. It is unlikely that you will need to handle this interface directly, but it helps to know
that it is involved in searching.

Getting Records
A repository search returns data wrapped in a polymorphic IUnknown interface, as described in Getting and
Putting Data. To interpret the data as repository records, cast it as IBulkRecord2.

InTrust 11.3.2 SDK Reference
Repository Services API

13

Example (C#)
class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver
{

public REPOSITORYSERVICESLib.ICookie m_cookie;
public MyObserver()
{
}
public void OnDone()
{

Console.WriteLine("Search done");
}
public void OnError(int hr, string description)
{

Console.WriteLine("Search error: {0}", description);
}
public void OnNext(object data)
{

if (data != null)
{

IBulkRecord2 bulk_record2 = (data as IBulkRecord2);
List<record2> records = bulk_record.GetRecords().Cast<record2>

().ToList<record2>();
int record_count = 0;
foreach (record2 my_record in records)
{

++record_count;
}

}
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(data);

}
}

For details about what repository records are, see Repository Record Data Structures.

Getting Events
A repository search returns data wrapped in a polymorphic IUnknown interface, as described in Getting and
Putting Data. To interpret the data as event records, cast it as IBulkEventWithReadExtensions.

Example (C#)
class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver
{

public REPOSITORYSERVICESLib.ICookie m_cookie;
public MyObserver()
{
}
public void OnDone()
{

Console.WriteLine("Search done");
}

InTrust 11.3.2 SDK Reference
Repository Services API

14

public void OnError(int hr, string description)
{

Console.WriteLine("Search error: {0}", description);
}
public void OnNext(object data)
{

if (data != null)
{

IBulkEventWithReadExtensions bulk_event = (data as
IBulkEventWithReadExtensions);

List<event_with_read_extensions> events = bulk_event.GetEvents
().Cast<event_with_read_extensions>().ToList<event_with_read_extensions>();

int event_count = 0;
foreach (event_with_read_extensions my_event in events)
{

++event_count;
}

}
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(data);

}
}

For details about what event records are, see Event Record Data Structures.

Composing REL Queries
REL is an expression language developed specifically for InTrust, and it is used for multiple purposes besides
repository searching.
The following topics about REL in the InTrust Customization Kit contain information that is fully applicable to
queries used for searching in repositories:

l Words

l Expressions

l Operators

l Functions

However, due to the specifics of how repositories operate, there are some limitations on what you can include in
your queries and nuances that affect performance. These peculiarities have to do with the following:

l Use of punctuation in field values

l Whether "equals" or "contains" semantics are used

Punctuation and Other Non-Alphanumeric Characters
Some characters, such as curly braces and the hyphen, are treated in a special way by the repository indexing
engine. A query that includes these characters is automatically transformed during an indexed search, even
though the query itself may be perfectly valid. The indexing engine splits the query into substrings at these
characters and uses the substrings to make the clauses of an AND expression.
As a result, these characters are effectively removed from the index. This affects how well irrelevant data is
filtered out and, consequently, how fast queries are evaluated. The following is a list of such characters:
- \ & { } () [] < > , ! ? .

InTrust 11.3.2 SDK Reference
Repository Services API

15

https://support.quest.com/technical-documents/intrust/11.3.2/customization-kit
https://support.quest.com/technical-documents/intrust/11.3.2/customization-kit/language-reference/rel/words
https://support.quest.com/technical-documents/intrust/11.3.2/customization-kit/language-reference/rel/expressions
https://support.quest.com/technical-documents/intrust/11.3.2/customization-kit/language-reference/rel/operators
https://support.quest.com/technical-documents/intrust/11.3.2/customization-kit/language-reference/rel/functions

You can deal with this limitation in the following ways:

What you can do Comments

Do nothing; leave
the characters
where they are.

Your query will be transformed automatically so that the indexing engine filters out as
much of the repository as it can before running the search. However, punctuation
characters are not part of the index, so the expected values may not be the only ones
that match. A lot of similar but irrelevant matches can be present in the results.
How fast your query runs and how relevant its results are depends on how many
distinctive alphanumeric substrings it contains besides the punctuation:

l If your query is made up of strings that have low chances of occurrence, your
search will be fast and the results will be mostly relevant.

l If your query contains strings that occur all the time, your search will be slow
and the results will not be very useful.

Pick different fields
to match by; ones
that can contain only
alphanumeric
characters.

You can achieve maximum search performance, but it can be difficult or impossible to
find equally relevant fields.

"Equals" Versus "Contains"
In a repository search, a query that uses "equals" semantics (the striequ REL function) is always evaluated
faster than a similar query using "contains" semantics (the substr REL function). Queries with "does not equal"
semantics are even slower.
Regular expressions (the regexp REL function) are slowest.

Searchable Event and Record Fields
This topic lists the field names that you can use in your REL queries when you search for events or records in a
repository using the IObservable and IObserver interfaces.
The results of a search are polymorphic and can be cast to events or records as necessary. In addition, you can
treat the contents of the repository as either events or records and use either event field names or record field
names. However, you cannot mix event and record field names in the same query.
For example, if your repository contains custom records with filled-in insertion strings, it is convenient to treat the
records as events for easy access to insertion string contents (see Insertion Strings below).

Event Fields

Field Details

__AnyField Look for the specified pattern in all fields.

Category A symbolic representation of the event category. Search pattern example:
"(\\b|\\W|^)security"

Computer The computer where the event was logged.

InTrust 11.3.2 SDK Reference
Repository Services API

16

https://support.quest.com/technical-documents/intrust/11.3.2/customization-kit/language-reference/rel

Field Details

Environment Internally, InTrust predefines two environment ID values:

l 8EAF6C85-D1FF-4CFD-9D90-64944C8E6B3E
Unix Network Environment

l 9E442BEE-EAC2-4D79-9013-053FB225CFD0
Microsoft Windows Network Environment

Custom environment IDs can also occur.

EventID

PlatformID Internally, InTrust predefines the following platform ID values:

l 500
Microsoft Windows

l 610
Solaris

l 620
HP-UX

l 630
Linux

l 640
IBM AIX

Custom platform IDs can also occur.

Source The subsystem or service that the event is related to. For example, in forwarded Syslog
events the source is "Syslog Device".

SourceComputer The computer where the event originated; this can be different from the computer where
it was logged.

SourceDomain The domain of the computer where the event originated, if applicable.

Time The timestamp in the event.
Tip: Use filtering by date in your REL queries whenever the date range is known. This
speeds up searches considerably.

Type The predefined types are Information,Warning, Error, Failure Audit and Success
Audit.

UserDomain The domain of the user who produced the event.

UserName The name of the user who produced the event.

VersionMajor The major operating system version number of the computer on which the event
occurred. For example, the major version of Windows 7 is 6.

VersionMinor The minor operating system version number of the computer on which the event
occurred. For example, the minor version of Windows 7 is 1.

InTrust 11.3.2 SDK Reference
Repository Services API

17

Field Details

What A brief description of what the event is about.

Where The computer where the event happened (had effect).

Where_From The name or IP address of the computer from which the activity (such as a logon or
configuration change) was performed. This is not necessarily the same computer as the
one where the activity had effect.

Who The plain user name of the account that caused the event.

WhoDomain The Active Directory domain of the account that caused the event, where applicable.

Whom The user account that was affected by the event, where applicable.

Insertion Strings
To look in insertion strings and resolved insertion strings, respectively, use the following field names:

l InsertionStringN

l ResolvedInsertionStringN

where N is the number of the string.
Examples of REL expressions:

in(InsertionString10, "rei", "(\\b|\\W|^)is1608133597");

striequ(ResolvedInsertionString2,"is");

Record Fields
Most of the fields defined in the record data structures (see Repository Record Data Structures) can be used in
search queries:

l directory_tag_1

l directory_tag_2

l directory_tag_3

l directory_tag_4

l field_1

l field_3

l field_4

l file_tag_1

l file_tag_2

l file_tag_3

l file_tag_4

l formatting_record_field

l string_field_1

l string_field_2

InTrust 11.3.2 SDK Reference
Repository Services API

18

l string_field_3

l string_field_4

l string_field_5

Note that some fields contain integers and others strings.
Examples of REL expressions:

field_1 = 123;

striequ(directory_tag_1,"blue");

striequ(formatting_record_field,"green");

striequ(string_field_1,"cerise");

file_tag_1 = 5385;

Writing Records
After you have obtained the IRepositoryRecordInserter interface (as described in Getting and Putting Data), you
need to generate the data structures that you are going to write. Before you begin writing, make sure you
understand the record data structures (see Repository Record Data Structures) and are able to construct them
efficiently. The repository API provides two ways to write records: you can use either complete record structures
or arrays of the smaller structures from which records are made up. The next steps depend on this choice.

Approach 1: Writing Whole Record Structures
In this approach, you combine your newly generated tags and contents structures into complete record
structures, put the records in an array and supply the array to the PutRecords method of the
IRepositoryRecordInserter interface.

Approach 2: Splitting Records for Writing
This approach requires that you plan in advance which of your record fields best to use as tags. This will enable
you to create records with shared tags and different contents. The IRepositoryRecordInserterLight interface
stores the tags that you want to share among your records. To get this interface, call the BindFields method of
the IRepositoryRecordInserter interface you have obtained. This method accepts your tags as a parameter.
After that, supply the contents parts of your records to the IRepositoryRecordInserterLight interface; it will form
complete record structures and perform the writing.

InTrust 11.3.2 SDK Reference
Repository Services API

19

Example (C#)
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Runtime.InteropServices;

using REPOSITORYSERVICESLib;
using REPOSITORYRECORDINSERTERLib;

using INTRUSTENVIRONMENTLib;

namespace RepositoryRecordInserterTest2
{

class Program
{

public static uint ToUnixTime(DateTime date)
{

var epoch = new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc);
return (uint)Convert.ToInt64((date.ToUniversalTime() -

epoch).TotalSeconds);
}

public static DateTime UnixTimestampToDateTime(uint unixTime)
{

DateTime unixStart = new DateTime(1970, 1, 1, 0, 0, 0, 0,
System.DateTimeKind.Utc);

long unixTimeStampInTicks = (long)(unixTime * TimeSpan.TicksPerSecond);
return new DateTime(unixStart.Ticks + unixTimeStampInTicks);

}

class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver
{

private AutoResetEvent m_waitHandler;

public int event_count;

public REPOSITORYSERVICESLib.ICookie m_cookie;

public MyObserver(AutoResetEvent x)
{

m_waitHandler = x;
event_count = 0;

}

public void OnDone()
{

Console.WriteLine("Search done");
m_waitHandler.Set();

InTrust 11.3.2 SDK Reference
Repository Services API

20

}

public void OnError(int hr, string description)
{

Console.WriteLine("Search error - {0}", description);
m_waitHandler.Set();

}

public void OnNext(object data)
{

if (data != null)
{

IBulkRecord bulk_event = (data as IBulkRecord);
List<record> records = bulk_event.GetRecords().Cast<record>

().ToList<record>();

foreach (record my_record in records)
{

Console.WriteLine("next record");
Console.WriteLine(" time - {0}", UnixTimestampToDateTime

(my_record.record_contents.gmt_time));
foreach (named_string my_named_string in my_record.record_

contents.named_fields)
{

Console.WriteLine(" key - {0}, value - {1}", my_named_
string.name, my_named_string.value);

}
++event_count;

}
}

System.Runtime.InteropServices.Marshal.FinalReleaseComObject(data);
}

public void Dispose()
{

m_cookie.Stop();
}

}

static tags construct_sharding_fields(string log)
{

// For details about using sharding keys, see the "Repository Record Data
Structures" topic

tags tg = new tags();
tg.directory_tag_1 = "ShardingLevel1";
tg.directory_tag_2 = "ShardingLevel2";
tg.directory_tag_3 = "{A9E5C7A2-5C01-41B7-9D36-E562DFDDEFA9}"; // Sharding

level 3 must be a GUID
tg.directory_tag_4 = log;

tg.file_tag_1 = 0;
tg.file_tag_2 = 500;

InTrust 11.3.2 SDK Reference
Repository Services API

21

tg.file_tag_3 = 0;
tg.file_tag_4 = 0;
return tg;

}

static contents construct_contents_fields(insertion_string[] insertion_
strings, named_string[] named_fields, string formatting_record_field)

{
contents ct = new contents();

ct.string_field_1 = "string_field_1_value";
ct.string_field_2 = "string_field_2_value";
ct.string_field_3 = "string_field_3_value";
ct.string_field_4 = "string_field_4_value";
ct.string_field_5 = "string_field_5_value";

ct.formatting_record_field = formatting_record_field;

ct.gmt_time = ToUnixTime(DateTime.Now);

ct.field_1 = 300;
ct.field_2 = 50;
ct.field_3 = 2;
ct.field_4 = 3;

ct.strings = insertion_strings;

ct.named_fields = named_fields;

return ct;
}

static record construct_record(uint index, string logname, insertion_string[]
insertion_strings, named_string[] named_fields, string description)

{
return new record() {

record_path = construct_sharding_fields(logname),
record_contents = construct_contents_fields(insertion_strings, named_

fields, description)
};

}

static void insert_records(IRepositoryRecordInserter pInserter)
{

DateTime start = DateTime.Now;

List<record> records = new List<record>();
for (uint i = 0; i != 16000; ++i)
{

insertion_string[] insertion_strings =
{

new insertion_string() { index = 1, value = "My" },

InTrust 11.3.2 SDK Reference
Repository Services API

22

new insertion_string() { index = 2, value = "String value 2" },
new insertion_string() { index = 6, value = "Event" },
new insertion_string() { index = 7, value = "String value 7" }

};

named_string[] named_fields =
{

new named_string() { name = "FieldName1", value =
"FieldValue1"},

new named_string() { name = "FieldName2", value =
"FieldValue2"},

new named_string() { name = "FieldName3", value =
"FieldValue3"},

new named_string() { name = "FieldName4", value =
"FieldValue4"},

new named_string() { name = "FieldName5", value =
"FieldValue5"},

};

records.Add(construct_record(i, "Log1", insertion_strings, named_
fields, "This %1 %6 description"));

}
pInserter.PutRecords(records.ToArray());
pInserter.Commit();

}

static tags construct_naive_sharding_fields(string log)
{

// For details about using sharding keys, see the "Repository Record Data
Structures" topic

tags tg = new tags();
tg.directory_tag_1 = "ShardingLevel1";
tg.directory_tag_2 = "ShardingLevel2";
tg.directory_tag_3 = "{A9E5C7A2-5C01-41B7-9D36-E562DFDDEFA9}"; // Sharding

level 3 must be a GUID
tg.directory_tag_4 = log; // ShardingLevel4
return tg;

}

static contents construct_naive_contents_fields(named_string[] named_fields)
{

contents ct = new contents();

ct.gmt_time = ToUnixTime(DateTime.Now);

ct.named_fields = named_fields;

return ct;
}

static record construct_naive_record(uint index, string logname, named_string
[] named_fields)

{

InTrust 11.3.2 SDK Reference
Repository Services API

23

return new record()
{

record_path = construct_naive_sharding_fields(logname),
record_contents = construct_naive_contents_fields(named_fields)

};
}

static void insert_naive_records(IRepositoryRecordInserter pInserter)
{

DateTime start = DateTime.Now;

List<record> records = new List<record>();
for (uint i = 0; i != 16000; ++i)
{

named_string[] named_fields =
{

new named_string() { name = "FieldName1", value =
"FieldValue1"},

new named_string() { name = "FieldName2", value =
"FieldValue2"},

new named_string() { name = "FieldName3", value =
"FieldValue3"},

new named_string() { name = "FieldName4", value =
"FieldValue4"},

new named_string() { name = "FieldName5", value =
"FieldValue5"},

};

records.Add(construct_naive_record(i, "Log1", named_fields));
}
pInserter.PutRecords(records.ToArray());
pInserter.Commit();

}

static void search_records(IInTrustRepository intrust_repository, string
query)

{
IObservable observable = intrust_repository.Searcher.Search(query);

AutoResetEvent waitHandler = new AutoResetEvent(false);
MyObserver observer = new MyObserver(waitHandler);
observable.Subscribe(observer, out observer.m_cookie);
waitHandler.WaitOne();

}

static void records_example(IInTrustRepository intrust_repository)
{

IRepositoryRecordInserter pInserter = intrust_repository.Inserter;
{

for (int i = 0; i < 1; ++i)
insert_naive_records(pInserter);

search_records(intrust_repository, "(in(__AnyField, \"rei\", \"

InTrust 11.3.2 SDK Reference
Repository Services API

24

(\\\\b|\\\\W|^)FieldValue5\"));");
}
{

for (int i = 0; i < 1; ++i)
insert_records(pInserter);

search_records(intrust_repository, "(in(__AnyField, \"rei\", \"
(\\\\b|\\\\W|^)String value 7\"));");

}
}

static void Main(string[] args)
{

if (args.Length != 2)
{

Console.WriteLine("Invalid argument count.\n");
Console.WriteLine("\tRepositoryRecordInserterTest.exe <InTrust Server

Binding String> <Reposiotry Name>\n");
return;

}

try
{

InTrustEnvironment intrust_environment = new InTrustEnvironment();
IInTrustRepository intrust_repository = intrust_

environment.ConnectToServer(args[0]).

Organization.

Repositories.Cast<IInTrustRepository>().Where(x => x.Name == args[1]).First();

records_example(intrust_repository);
}
catch (Exception e)
{

Console.WriteLine("Error : {0}", e.ToString());
}

}
}

}

Writing Events
After you have obtained the IRepositoryRecordInserter interface (as described in Getting and Putting Data), take
the following steps:

1. Generate valid event_with_extensions structure instances; this structure is described in Event Record
Data Structures.

InTrust 11.3.2 SDK Reference
Repository Services API

25

2. Through combined use of the IEventToRecordFormatter and IRepositoryRecordInserter interfaces,
supply your newly generated events for writing.
For that, use the Format method of the IEventToRecordFormatter interface to wrap your events in
IBulkEventWithReadExtensions, and pass the resulting wrapper interface as a parameter to the
PutRecords2 method of the IRepositoryRecordInserter interface.

Sort Order for Writing
When you write events in batches, the events must be sorted by gmt_time, but not necessarily throughout the
entire batch. The important thing is to sort those events where the following are the same: domain, computer, log
name. That is the scope where you need to sort. For example, if your event batch contains 1000 events from
1000 computers, no sorting is necessary. But if it is 1000 events from two computers, you need to do two sorts.

Out-of-Order Writing
Submitting events out of order is possible, but there is a serious caveat. Whenever the timestamp of your event
is less than that of the event you submitted last, you must use the Commit method of your inserter interface
before you write the “flashback” event. Here are some implications of this:

l Events that are newer than the last-submitted event and older than that event should not be put in the
same batch. Otherwise, timestamps will not be interpreted correctly. For example, searching within a
specific time range will not return events that match but were written out of order between commits.

l A huge amount of repository files (caused by frequent commits) is bad for performance. Batch your “old”
events as much as possible.

Repository Record Data Structures
A record is a chunk of data that is (or has been prepared for being) stored in a repository and processed by
repository searches. A record is made up of two parts: tags and contents. The tags indicate where in the file
system the file with this record is located. At the same time, the tags double as record field values. The contents
do not do anything other than contain record field values.
When you create records, it is important which fields you use as tags and which you use as contents. By
handling tags rationally you can help speed up searches on the data you are storing and minimize disk usage
by your repository contents.
When you search for records, it doesn't matter in search queries whether a value is used as a tag or as contents.
For recommendations on efficiently organizing data fields in records, see Recommendations on Setting
Tags below.

tags
struct tags

{

 BSTR directory_tag_1;

 BSTR directory_tag_2;

 BSTR directory_tag_3; // must specify a GUID

InTrust 11.3.2 SDK Reference
Repository Services API

26

 BSTR directory_tag_4;

 unsigned file_tag_1;

 unsigned file_tag_2;

 unsigned file_tag_3;

 unsigned file_tag_4;

};

Contains the values of eight of the record's fields. In addition to carrying record data, this combination of fields is
used for identifying the path to a folder and the name of a file in the repository tree. Repository trees are four
levels deep, and files are located only at the deepest level.
The directory tags specify the four nesting levels. The third level must be a string representation of a GUID;
InTrust verifies the format. This requirement is due to the implementation of the repository services. The GUID is
used for identifying event-providing data sources, and each data source type has a particular known GUID. You
may want to come up with your own set of special-purpose GUIDs for your specific tasks (for example,
hierarchical organization).
The file tags specify the four parts of the file's base name. A file represented by this structure contains one or
more entries represented by contents and contents2 structures. If the number of entries per file hits a limit, the
same base name is used for creating a new file, and the entries are continued in it.
In a simplified way, the location of a repository file in the file system hierarchy can be represented as follows:

repository_root
└ directory_tag_1
 └ directory_tag_2
 └ directory_tag_3
 └ directory_tag_4
└ file_tag_1_file_tag_2_ file_tag_3_file_tag_4_InTrust_internal_tags

Because tags correlate with the file system, make sure their values do not contain characters that are disallowed
in file and directory names.

contents
struct contents

{

 unsigned field_1;

 unsigned field_2;

 short field_3;

 short field_4;

 DATE gmt_time;

 BSTR string_field_1;

 BSTR string_field_2;

 BSTR string_field_3;

 BSTR string_field_4;

InTrust 11.3.2 SDK Reference
Repository Services API

27

 BSTR string_field_5;

 SAFEARRAY(struct insertion_string) strings;

 SAFEARRAY(struct named_string) named_fields;

 BSTR formatting_record_field;

};

Used for writing records to the reposiotry and contains the remaining values of the record fields in addition to
those specified by the tags structure. This structure is physically represented by an entry in a repository file.

NOTE: The InTrust repository is known to easily handle up to 300 strings per record. Higher numbers of
strings have not been tested and cannot be recommended.
As a best practice, make sure that your string mapping is consistent; that is, the same string numbers
should have the same meanings across your records. This is beneficial for repository searches.

CAUTION: At this time, the field_2 field is not indexed and cannot be processed in repository
searches. Writing useful data to this field is currently not recommended.

contents2
struct contents2

{

 unsigned field_1;

 unsigned field_2;

 short field_3;

 short field_4;

 DATE gmt_time;

 BSTR string_field_1;

 BSTR string_field_2;

 BSTR string_field_3;

 BSTR string_field_4;

 BSTR string_field_5;

 SAFEARRAY(struct insertion_string) strings;

 SAFEARRAY(struct named_string) native_named_fields;

 SAFEARRAY(struct named_string) resolved_named_fields;

 BSTR formatting_record_field;

};

Used in results of repository searches and contains the remaining values of the record fields in addition to those
specified by the tags structure. This structure is physically represented by an entry in a repository file.
Unlike the contents structure, the contents2 structure contains two distinct arrays of named_string structures.
This is because the data for the native_named_fields field is not known during record writing. It is only
available to repository searches.

InTrust 11.3.2 SDK Reference
Repository Services API

28

NOTE: The InTrust repository is known to easily handle up to 300 strings per record. Higher numbers of
strings have not been tested and cannot be recommended.
As a best practice, make sure that your string mapping is consistent; that is, the same string numbers
should have the same meanings across your records. This is beneficial for repository searches.

CAUTION: At this time, the field_2 field is not indexed and cannot be processed in repository
searches. Writing useful data to this field is currently not recommended.

record
struct record

{

 struct tags record_path;

 struct contents record_contents;

};

Combines the path-specifying (tags) and complementary (contents) parts of a record into a single structure.
This type of record is used for writing to the repository.

record2
struct record2

{

 struct tags record_path;

 struct contents2 record_contents;

};

Combines the path-specifying (tags) and complementary (contents2) parts of a record into a single structure.
This type of record is returned by repository searches.

Recommendations on Setting Tags
Organize your record tags according to the likelihood of the value being the same in a given collection of
records. That is, directory_tag_1 should contain the value that is the same in most of the records you are about
to generate. Conversely, directory_tag_4 should contain the value that the fewest records have in common.
Also note that the best way to map the tags (and thereby define how the records will be stored physically) is to
make them correspond to something that falls into a meaningful hierarchy. For example, all your records might
be Security log events, but it still doesn't make sense to make the log name the topmost level. You would do
better to tag map directory_tag_1,..., directory_tag_4 to domain, computer, data source and log name,
respectively; even though there is more value variation at the top levels this way.
A repository can store heterogeneous objects, but you need a way to tell their types apart. This requires a
generic ID field, and directory_tag_3 is good for the purpose. If you come up with a GUID for each object type
(file system, computer, Active Directory object and so on), you will not confuse them. A further improvement is to
design a hierarchy of IDs.

InTrust 11.3.2 SDK Reference
Repository Services API

29

Event Record Data Structures
These data structures are alternatives to generic repository record data structures. Use event records for
convenience when your records represent log events. For details about the meaning of the fields used in event
records, see Event Record Data Structures below.
The primary data structure is base_event. There are also two structures that extend it: event_with_extensions
and event_with_read_extensions. For details about the use of these data structures, see Getting Events and
Writing Events.

base_event
struct base_event

{

 BSTR environment;

 BSTR gathering_domain;

 BSTR gathering_computer;

 BSTR datasource_type;

 BSTR gathered_event_log;

 BSTR user_name;

 BSTR user_domain;

 BSTR source_name;

 BSTR computer_name;

 BSTR string_category;

 BSTR description_template;

 SAFEARRAY(struct insertion_string) strings;

 SAFEARRAY(unsigned char) binary_data;

 unsigned time_gmt;

 unsigned time_generated;

 long time_bias;

 unsigned record_key;

 unsigned event_id;

 unsigned computer_type;

 unsigned platform_id;

 short version_major;

 short version_minor;

 short event_type;

 short numeric_category;

InTrust 11.3.2 SDK Reference
Repository Services API

30

 unsigned padding000;

};

CAUTION: The binary_data field is present only for compatibility with Windows events. This data
cannot be indexed or processed in repository searches. Writing useful data to this field is not
recommended.

event_with_read_extensions
struct event_with_read_extensions

{

 struct base_event original_event;

 BSTR formatted_description;

 SAFEARRAY(struct augmented_insertion_string) resolved_strings;

 SAFEARRAY(struct named_string) named_strings;

};

named_string
struct named_string
{
 BSTR name;
 BSTR value;
};

insertion_string
struct insertion_string
{
 BSTR value;
 int index;
 int padding;
};

A regular insertion string.

augmented_insertion_string
struct augmented_insertion_string
{
 int source_index;
 int result_index;
 BSTR value;
};

These are normalized parameters that are not originally present in native events. For a description of these
parameters, see the Filter Parameters in Repository Viewer topic.

InTrust 11.3.2 SDK Reference
Repository Services API

31

https://support.quest.com/technical-documents/intrust/11.3.2/searching-for-events-in-repository-viewer/filter-parameters-in-repository-viewer

NOTE: The source_index field holds the index of the original insertion string. The result_index field
holds the index of the resulting insertion string after the original has been resolved.

event_with_extensions
struct event_with_extensions

{

 struct base_event original_event;

 SAFEARRAY(struct resolved_string) resolved_strings;

};

NOTE: The InTrust repository is known to easily handle up to 300 insertion strings per event. Higher
numbers of strings have not been tested and cannot be recommended.
As a best practice, make sure that your insertion string mapping is consistent; that is, the same insertion
string numbers should have the same meanings across your events. This is beneficial for repository
searches.

event_with_extensions2
struct event_with_extensions2

{

 struct base_event original_event;

 SAFEARRAY(struct resolved_string) resolved_strings;

 SAFEARRAY(struct named_string) named_fields;

};

resolved_string
struct resolved_string
{
 BSTR value;
 int insertion_string_index;
 resolve_type insertion_string_resolve_type;
};

typedef enum
{
 custom = 0,
 parameter,
 ad_object_guid_to_distinguished_name,
 user_sid_to_user_name,
 group_policy_guid_to_group_policy_object_name,
 device_name_to_path
} resolve_type;

InTrust 11.3.2 SDK Reference
Repository Services API

32

The resolve_type enumeration specifies what kind of resolution is supposed to have taken place to get the
resulting value. The insertion string resolution mechanism in InTrust is fairly complex, but for the purposes of the
repository service API it is enough to follow this example:

insertion_string[] insertion_strings =
{

new insertion_string() { index = 1, padding = 0, value =
"original string" },

new insertion_string() { index = 2, padding = 0, value =
"%%2308" }, // event parameter

new insertion_string() { index = 3, padding = 0, value = "
{9F29FD37-3CD4-4179-99F1-A6341DCC4EB3}" }, // ad object guid (user guid)

new insertion_string() { index = 4, padding = 0, value =
"S-1-1-0" }, // user sid

new insertion_string() { index = 5, padding = 0, value = "
{29EDB5C5-B2C1-4001-9C96-EE51A6A7CAC3}" }, // ad object guid (group policy
guid)

new insertion_string() { index = 6, padding = 0, value =
"\\Device\\HarddiskVolume1\\SomeFolder\\SomeFile.txt" } };
resolved_string[] resolved_insertion_strings =
{

new resolved_string() {insertion_string_index = 2, insertion_string_
resolve_type = resolve_type.parameter, value = "The user has not been
granted the requested logon type at this machine."},

new resolved_string() {insertion_string_index = 3, insertion_string_
resolve_type = resolve_type.ad_object_guid_to_distinguished_name, value =
"CN=user1,DC=aa,DC=com"},

new resolved_string() {insertion_string_index = 4, insertion_string_
resolve_type = resolve_type.user_sid_to_user_name, value = "EDM\\User2"},

new resolved_string() {insertion_string_index = 5, insertion_string_
resolve_type = resolve_type.ad_object_guid_to_distinguished_name, value =
"CN={B96B9D14-E2A4-47ae-8ACA-CB0460089616},DC=aa,DC=com"},

new resolved_string() {insertion_string_index = 5, insertion_string_
resolve_type = resolve_type.group_policy_guid_to_group_policy_object_name, value
= "MyGroupPolicyObject"},

new resolved_string() {insertion_string_index = 6, insertion_string_
resolve_type = resolve_type.ad_object_guid_to_distinguished_name, value =
"D:\\SomeFolder\\SomeFile.txt"},
};

Note that in the case of resolving a group policy GUID to a group policy name you need to provide two
resolved_string instances.

InTrust 11.3.2 SDK Reference
Repository Services API

33

Creating and Removing Repositories
The methods for creating and removing production InTrust repositories (Add and Remove) are available in the
IInTrustRepositoryCollection interface, which provides access to all repositories in a particular InTrust
organization.

CAUTION: For these operations to succeed, the account you are using must be an InTrust
organization administrator. To configure this privilege for the account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

For details about obtaining a collection of repositories, see Connecting to a Repository.
Instead of a production repository (which is registered with InTrust, managed by an InTrust server and has an
entry in the InTrust configuration), you may want to create an idle repository (which has only the raw repository
file structure). For that, use the IIdleRepositoryFactory interface, which constructs IIdleRepository interfaces.

Working with Repository Properties
Repositories can have properties attached to them. They use the IProperty interface and are accessed
collectively through IPropertyCollection interfaces. These collection interfaces are associated with a
IInTrustRepository interface, which has getter and setter methods for supported property groupings. The
following groupings are available at this time:

l Forwarding properties
These properties are used by the event forwarding engine in InTrust (see Integration into SIEM Solutions
Through Event Forwarding). For details about these properties, see Using Forwarding Properties.

l Custom attributes
These are arbitrary properties that you can set as necessary for your own purposes. For details, see
Using Custom Attributes.

Using Custom Attributes
You can associate custom attributes with InTrust repositories. They are available through the CustomAttributes
methods of an IInTrustRepository interface.
There are no custom attribute guidelines; what custom attributes you add and how you use them is up to you.
However, note that the following limits are set for the generic IProperty interface used by custom attributes:

l Name: 64 characters

l If you set a string of the BSTR type for the value: 1024 characters

It is also recommended that you keep the number of custom attributes low: tens rather than hundreds.
For details about the generic property interfaces used for custom attributes, see IProperty and
IPropertyCollection.

InTrust 11.3.2 SDK Reference
Repository Services API

34

https://support.quest.com/technical-documents/intrust/11.3.2/integration-into-siem-solutions-through-event-forwarding/
https://support.quest.com/technical-documents/intrust/11.3.2/integration-into-siem-solutions-through-event-forwarding/

Example (C#)
/* Connect to repository */
IInTrustEnvironment2 env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServerWithCredentials("8.8.8.8",
@"domain\user_name", "password");
IInTrustOrganization org = server.Organization;
IInTrustRepository rep = org.Repositories.Item("Default InTrust Audit Repository");

/* Get collection of custom attributes */
IPropertyCollection fwd_props = rep.CustomAttributes;

/* Set custom attributes */
fwd_props.Set("NumberAttr", 12);
fwd_props.Set("StringAttr", "Initial status");

/* Get attribute by name */
IProperty stringAttr = fwd_props.Item("StringAttr");
/* Get value */
System.Console.WriteLine("String attribute value is {0}", stringAttr.PropertyValue);
/* Set new value */
stringAttr.PropertyValue = "Updated status";

/* Enumerate all attributes */
foreach (IProperty prop in fwd_props)
{

System.Console.WriteLine("Attibute : {0}, Value : {1}", prop.PropertyName,
prop.PropertyValue);
}

/* Delete attribute */
fwd_props.Remove("NumberAttr");

/* Create new collection */
PropertyCollection coll = new PropertyCollection();
coll.Set("FirstAttr", "First value");
coll.Set("SecondAttr", "Second value");
rep.CustomAttributes = coll;

Using Forwarding Properties
These properties control how the InTrust event forwarding engine handles the repository. They are available
through the ForwardingProperties methods of an IInTrustRepository interface.
The table below lists the supported properties and explains their values. For details about the event forwarding
feature, see Integration into SIEM Solutions Through Event Forwarding.

CAUTION: Although the generic IProperty interface used by forwarding properties supports the
polymorphic VARIANT type for values, you should set them to strings of the BSTR type. Internally,
InTrust assumes forwarding property values to be strings.

InTrust 11.3.2 SDK Reference
Repository Services API

35

https://support.quest.com/technical-documents/intrust/11.3.2/integration-into-siem-solutions-through-event-forwarding/

Name Format Details

ForwardingEnabled "0" or "1" "0"—forwarding is disabled
"1"—forwarding is enabled

ForwardingServer GUID in curly braces The ID of the InTrust server that forwards the events.
Forwarding does not work if this property is empty.

Formatter GUID in curly braces The following values are acceptable:

l Dell SecureWorks:
{c7789ad6-5e47-4553-8e09-21627545fced}

l Tibco LogLogic:
{281E5204-28CD-4949-97C1-
ABEACAA41A17}

l Splunk (_json):
{0207AD28-4DDA-4C45-A555-
82F9313D0ED4}

l IBM QRadar:
{905040C9-6197-447E-86A0-780A9A0F2389}

l Custom format:
{06F5C239-CB32-4cf0-905F-9547365D0B6D}

CustomFormatScript JavaScript code Used only if Formatter is set to "{06F5C239-CB32-
4cf0-905F-9547365D0B6D}" (custom format).

Sender GUID in curly braces At this time, only UDP is supported as the sender, with
the GUID {943e412f-f58a-450d-bec7-96cfa954645e}.

Host Address of the host
that forwards events

Port Port that is used for
forwarding

MessageEncodingCodePage Character encoding
to expect in the
messages

If omitted, Windows-1251 is assumed.

ForwardingFilter One of the following:

l Path made
up of GUIDs
in curly
braces with
the "\"
separator

l REL query

If forwarding is configured through InTrust Deployment
Manager, the value can be a path of GUIDs
representing an existing Repository Viewer search
folder.
You can set a custom REL query for message filtering
prior to forwarding.

InTrust 11.3.2 SDK Reference
Repository Services API

36

Getting Started with Repository
Services API
To check that the functionality of repository services API is available, use the
RepositoryRecordInserterExample.exe test application, which is installed with the InTrust SDK. Run this
application from the command prompt as follows:

RepositoryRecordInserterTest.exe <InTrust_server_binding_string> <repository_name>

<InTrust_server_binding_string> can be the name of the InTrust server.
<repository_name> is either the name of the repository as it appears in the InTrust UI (InTrust Deployment
Manager, Repository Viewer, InTrust Manager).
Example:

RepositoryRecordInserterExample.exe intrust01 "Default InTrust Audit Repository"

The example uses the “Default InTrust Audit Repository” name. A repository with this name is created during
InTrust deployment, so unless it has been renamed, it is present in every InTrust environment.

Testing Repository Searching
If the test program runs successfully, you should see event data in the command prompt's standard output.
Getting the data is actually the second stage of the program's operation. The first stage is writing that data.

Testing Event Writing
The program writes a number of events to the specified repository. To examine them in detail, connect to the
repository with Repository Viewer. For all these events, “MyComputer” is used as the Source Computer
parameter value and “computer” as the Computer parameter value.

InTrust 11.3.2 SDK Reference
Repository Services API

37

Next Steps
The sources of RepositoryRecordInserterExample.exe should have been provided to you together with
the InTrust SDK installer. Open the project in Visual Studio, study it, try to customize it and test the effects of
your changes.

InTrust 11.3.2 SDK Reference
Repository Services API

38

Log Knowledge Base API
The log knowledge base contains settings for transforming data from original log formats to the repository
format. The API does not work with predefined log definitions, which are completely out of its scope; it is
designed only for user-defined logs.
To work with the log knowledge base, use the following interfaces:

l IInTrustEventory

l IInTrustEventoryItemCollection

l IInTrustEventoryItem

To begin working with the log knowledge base, get a collection of known organizations (Organizations method
of the IInTrustEnvironment interface) and pick the necessary one. This involves working with the
IInTrustOrganizationCollection interface. Organizations are discovered by an Active Directory query.
The IInTrustOrganization that you get has the Eventory method, which provides access to the organization-wide
log knowledge base.
For details about the format of rules for matching log events and mapping fields, see Log Transformation
Rule Format.

CAUTION: If you modify the knowledge base for a specific log, this will invalidate all existing index
data for that log in all repositories that contain the log. Indexed searches will no longer find this log’s
events gathered prior to the modification. Data gathered after the modification will be indexed
correctly and be searchable.
If the unavailability of old data is not a problem for you, you don't have to do anything. Otherwise,
you will need to recreate valid indexes for all repositories that contain the log. However, it is not
feasible to recreate an index for a large production repository without taking it offline for a long time.
If you need to experiment with log knowledge base editing, use a dedicated test organization and
small repositories, which can be reindexed quickly.
For details about repository reindexing, see Recreating the Index.

Example
static void GetFullEventory()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
string eventory = ev.Eventory;
Console.WriteLine("Full eventory : " + eventory);

}
static void AddNewLog()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;

InTrust 11.3.2 SDK Reference
Log Knowledge Base API

39

https://support.quest.com/technical-documents/intrust/11.3.2/repository-indexing-for-advanced-search-capabilities/recreating-the-index

IInTrustEventoryItem log = logs.Add("NewLog",
@"<FieldInfo>

 <Fields>
 <Field FieldName = ""New_field"" DisplayName = ""NewField"" IsIndexed
= ""true""></Field>
 </Fields>
 <EventRules>
 <Event EventID = ""701"">
 <Field Name = ""Who"" Index = ""11""></Field>
 <Field Name = ""What"" Index = ""12""></Field>
 <Field Name = ""Object_Type"" Index = ""13""></Field>
 <Field Name = ""Object_Name"" Index = ""14""></Field>
 </Event>
 </EventRules>
 </FieldInfo>");
}
static void GetLogAndChangeRule()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;
IInTrustEventoryItem log = logs.Item("NewLog");
log.Rules = @"<FieldInfo>

 <Fields>
 <Field FieldName = ""New_field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
 </Fields>
 <EventRules>
 <Event EventID = ""701"">
 <Field Name = ""Who"" Index = ""11""></Field>
 </Event>
 </FieldInfo>";
}
static void EnumLogs()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;
foreach (IInTrustEventoryItem cur_log in logs)
{

string log_name = cur_log.Name;
string log_rule = cur_log.Rules;
Console.WriteLine("Log name : " + log_name);
Console.WriteLine("Log rule : " + log_rule);

}
}
static void RemoveLog()
{

IInTrustEnvironment env = new InTrustEnvironment();

InTrust 11.3.2 SDK Reference
Log Knowledge Base API

40

IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;
logs.Remove("NewLog");

}
static void AddNewDataSource()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection dataSources = ev.DataSources;
IInTrustEventoryItem dataSource = dataSources.Add("{10000000-0000-0000-0000-

000000000001}",@"<FieldInfo>
 <Fields>
 <Field FieldName = ""New_field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
 </Fields>
 <EventRules>
 <Event EventID = ""701"">
 <Field Name = ""Who"" Index = ""11""></Field>
 <Field Name = ""What"" Index = ""12""></Field>
 <Field Name = ""Object_Type"" Index = ""13""></Field>
 <Field Name = ""Object_Name"" Index = ""14""></Field>
 </Event>
 </EventRules>
</FieldInfo>");
}
static void GetDataSourceAndChangeRule()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection dataSources = ev.DataSources;
IInTrustEventoryItem dataSource = dataSources.Item("{10000000-0000-0000-0000-

000000000001}");
dataSource.Rules = @"<FieldInfo>

 <Fields>
 <Field FieldName = ""New_field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
 </Fields>
 <EventRules>
 <Event EventID = ""701"">
 <Field Name = ""Who"" Index = ""11""></Field>
 </Event>
 </FieldInfo>";
}
static void EnumDataSources()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");

InTrust 11.3.2 SDK Reference
Log Knowledge Base API

41

IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection dataSources = ev.DataSources;
foreach (IInTrustEventoryItem curDataSource in dataSources)
{

string ds_name = curDataSource.Name;
string ds_rule = curDataSource.Rules;
Console.WriteLine("Data source name : " + ds_name);
Console.WriteLine("Data source rule : " + ds_rule);

}
}
static void RemoveDataSources()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection dataSources = ev.DataSources;
dataSources.Remove("{10000000-0000-0000-0000-000000000001}");

}

NOTE: In the functions that handle data sources, the data source name must be in GUID format; for
example:

{10000000-0000-0000-0000-000000000001}

Log Transformation Rule Format
Log transformation rules are defined as XML. The structure of a rule is shown in the example below, which
contains all of the tags and parameters available.

<FieldInfo>
 <Fields>
 <Field FieldName = "TTF" DisplayName = "TTest Field" IsIndexed = "true"></Field>
 <Field FieldName = "TTF2" DisplayName = "TTest Field 2" IsIndexed =
"true"></Field>
 </Fields>
 <EventRules>
 <Event EventID = "701">
 <Field Name = "TTF" Index = "1"></Field>
 <Field Name = "TTF2" Index = "3"></Field>
 </Event>
 </EventRules>
</FieldInfo>

Log events are matched by Event ID, and the Field tags specify how the original event fields are mapped to
repository record fields. The Index parameter specifies the index of the target insertion string.
The following is a variation of the example above:

<FieldInfo>
 <Fields>
 <Field FieldName = "TTF" DisplayName = "TTest Field" IsIndexed =
"true"></Field>
 <Field FieldName = "TTF2" DisplayName = "TTest Field 2" IsIndexed =

InTrust 11.3.2 SDK Reference
Log Knowledge Base API

42

"true"></Field>
 </Fields>
 <EventRules>
 <Field Name = "TTF" Index = "1"></Field>
 <Field Name = "TTF2" Index = "3"></Field>
 </EventRules>
</FieldInfo>

In this second snippet, the rule applies to all event IDs in a log.

InTrust 11.3.2 SDK Reference
Log Knowledge Base API

43

Interfaces
The following is a list of all interfaces available with the InTrust repository API:

Interface Details

IBulkEventWithReadExtensions Results of a repository search
as an array of event_with_
read_extensions structures.

IBulkRecord Records packed into a single
batch as an array of record
structures for writing to the
repository.

IBulkRecord2 Results of a repository search
as an array of record2
structures.

ICookie Acts as the owner of a
repository search and can stop
the search.

IEventToRecordFormatter Transforms event records to a
representation suitable for
insertion into a repository by
the PutRecords2 method of
IRepositoryRecordInserter.

IIdleRepository An idle repository has the
correct structure on the file
system, but is not registered
with an InTrust organization.
Currently, you can search in
idle repositories using the
repository API, but you cannot
write to them.

IIdleRepositoryFactory Creates an idle InTrust
repository.

IIndexManager Provides access to indexing-
related operations.

IIndexManagerFactory Creates an instance of
IIndexManager for a production
or idle repository.

IInTrustEnvironment Entry point for access to InTrust
organizations, servers and
repositories.

IInTrustEventory Provides access to the log
knowledge base, which
contains rules that govern the
transformation of log entries
into repository and event
records.

InTrust 11.3.2 SDK Reference
Interfaces

44

Interface Details

IInTrustEventoryItem Represents an entry in the log
knowledge base.

IInTrustEventoryItemCollection Provides a collection of
IInTrustEventoryItem interfaces.

IInTrustOrganization Provides access to an InTrust
organization.

IInTrustOrganizationCollection Provides a collection of all
available InTrust organizations.

IInTrustRepository Provides the searching and
writing capabilities of a
repository.

IInTrustRepositoryCollection Provides a collection of all
repositories available in the
InTrust organization.

IInTrustRepositorySearcher Provides repository search
capabilities.

IInTrustServer Provides access to an InTrust
server.

IInTrustServerCollection Provides a collection of all
InTrust servers in the InTrust
organization.

IMultiRepositorySearcher A container for search objects
that lets you search in all of the
specified repositories
simultaneously.

IMultiRepositorySearcherFactory Creates an instance of
IMultiRepositorySearcher.

IObservable Defines a provider for push-
based notification.

IObserver Provides a mechanism for
receiving push-based
notifications. You need to
create your own
implementation of this
interface.

IProperty Property attached to an InTrust
repository. A property is a way
to tag repositories for arbitrary
purposes.

IPropertyCollection Collection of properties
associated with an InTrust
repository. Access to the
collections is gained through
specialized methods of the
IInTrustRepository interface
(such as CustomAttributes
and ForwardingProperties),

InTrust 11.3.2 SDK Reference
Interfaces

45

Interface Details

which filter the available
properties by purpose.

IRepositoryRecordInserter Provides write access to the
repository that it is associated
with and manages one or more
IRepositoryRecordInserterLight
interfaces, which do the actual
writing.

IRepositoryRecordInserterLight Generates valid record
structures from predefined and
significant values and writes
them to the repository.

IBulkEventWithReadExtensions
Use this interface to represent the results of a repository search as an array of event_with_read_extensions
structures.

Method
GetRecords
Gets records represented by event_with_read_extensions structures.

Syntax

GetRecords(
[out,retval] SAFEARRAY(struct event_with_read_extensions)* events

);

Parameter

Name Type Meaning

events SAFEARRAY(struct event_with_read_
extensions)*

Records represented by event_with_read_extensions
structures.

IBulkRecord
Represents a batch of repository records as an array of record structures for writing.

InTrust 11.3.2 SDK Reference
Interfaces

46

Method
GetRecords
Gets records that match search terms.

Syntax

GetRecords(
[out,retval] SAFEARRAY(struct record)* records

);

Parameter

Name Type Meaning

events SAFEARRAY(struct record)* Packed repository records.

IBulkRecord2
Represents the results of a repository search as an array of record2 structures.

Method
GetRecords
Gets records that match search terms.

Syntax

GetRecords(
[out,retval] SAFEARRAY(struct record2)* records

);

Parameter

Name Type Meaning

events SAFEARRAY(struct record2)* Discovered repository records.

ICookie
Acts as the owner of a repository search and can stop the search.

InTrust 11.3.2 SDK Reference
Interfaces

47

Method
Stop
Stops the search that this interface is associated with. This method is called automatically when the last
reference to the interface is destroyed.

CAUTION: This is a synchronous method. It must never be called from notifications received
through IObserver, because this will result in a deadlock.

Syntax

HRESULT Stop()

IEventToRecordFormatter
Transforms event records to a representation suitable for insertion into a repository by the PutRecords2 method
of IRepositoryRecordInserter. For details about event records, see Event Record Data Structures.

Method
Format
Performs the event-to-record transformation.

Syntax

HRESULT Format(
[in] SAFEARRAY(struct event_with_extensions) events,
[out, retval] IBulkRecord** ppBulkRecord

);

Parameters

Name Type Meaning

events SAFEARRAY(struct event_with_extensions) Event records to put into the repository.

ppBulkRecord IBulkRecord** Repository records prepared for insertion.

IIdleRepository
Represents an idle repository. An idle repository has the correct structure on the file system, but is not registered
with an InTrust organization. Currently, you can search in idle repositories using the repository API, but you
cannot write to them.

InTrust 11.3.2 SDK Reference
Interfaces

48

Method
Searcher
Returns a searcher interface for the idle repository.

Syntax

HRESULT Searcher(
[in, optional] VARIANT pIndexManager,
[out, retval] IInTrustRepositorySearcher** ppSearcher);

Parameters

Name Type Meaning

pIndexManager VARIANT Interface that contains details about the index to use for
searching in the repository. See IIndexManager for details.

ppSearcher IInTrustRepositorySearcher Searcher interface that you can supply your query to.

IIdleRepositoryFactory
Creates an idle InTrust repository. An idle repository has the correct structure on the file system, but is not
registered with an InTrust organization.

Method
MakeIdleRepository
Returns an idle InTrust repository.

Syntax

HRESULT MakeIdleRepository(
[in] BSTR bstrPath,
[in] BSTR bstrUser,
[in] BSTR bstrPassword,
[out, retval] IIdleRepository **ppRepository);

Parameters

Name Type Meaning

bstrPath BSTR Search query.

bstrUser BSTR User account to use for the operation.

InTrust 11.3.2 SDK Reference
Interfaces

49

Name Type Meaning

bstrPassword BSTR Password to use for the operation.

ppRepository IIdleRepository The newly-created idle repository.

IIndexManager
Provides access to indexing-related operations.

Methods
GetID
Returns the ID of the index manager.

Syntax

HRESULT GetID(
[out, retval] BSTR*

);

Parameter

Name Type Meaning

BSTR* ID of the index manager.

Shutdown
Shuts down the index manager.

Syntax

HRESULT Shutdown();

IIndexManagerFactory
Creates an instance of IIndexManager for a production or idle repository.

Methods
GetRemoteIndexManager
Creates an IIndexManager instance for a production repository.

InTrust 11.3.2 SDK Reference
Interfaces

50

Syntax

HRESULT GetRemoteIndexManager(
[in] BSTR pszServerName,
[in] BSTR pszRepositoryIdentity,
[out] IIndexManager** ppManager

);

Parameters

Name Type Meaning

pszServerName BSTR Name of an InTrust server in the same organization as the
repository.

pszRepositoryIdentity BSTR ID of the production repository that you need.

ppManager IIndexManager
**

Index manager for the production repository.

GetLocalIndexManager
Creates an IIndexManager instance for an idle repository.

Syntax

HRESULT GetLocalIndexManager(
[in] BSTR pszIndexPath,
[in] BSTR pszRepositoryPath,
[in] BSTR pszAcount,
[in] BSTR pszPassword,
[in] enum modeOpen mode,
[out, retval] IIndexManager**

);

Parameters

Name Type Meaning

pszIndexPath BSTR Path to the index data for the idle repository.

pszRepositoryPath BSTR Path to the idle repository file structure.

pszAcount BSTR User name for access to the idle repository.

pszPassword BSTR Password for access to the idle repository.

mode enum MODE_OPEN = 0
MODE_CREATE = 1

IIndexManager** Index manager to use for indexing-related operations.

InTrust 11.3.2 SDK Reference
Interfaces

51

IInTrustEnvironment
Entry point for access to InTrust organizations, servers and repositories.

Methods
ConnectToServer
Provides access to the specified InTrust server.

CAUTION: For this operation to succeed, the account you are using must be a member of the
AMS Readers local group on the InTrust server you want to connect to.
Alternatively, it can be an InTrust organization administrator. To configure this privilege for the
account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

Syntax

HRESULT ConnectToServer(
[in] BSTR bstrServerBinding,
[out, retval] IInTrustServer** ppServer

);

Parameters

Name Type Meaning

bstrServerBinding BSTR Name of the InTrust server.

IInTrustServer** InTrust server interface.

Organizations
Provides a collection of available InTrust organizations.

Syntax

HRESULT Organizations(
[out, retval] IInTrustOrganizationCollection** ppOrganization

);

Parameter

Name Type Meaning

ppOrganization IInTrustOrganizationCollection** Collection of available InTrust organizations.

InTrust 11.3.2 SDK Reference
Interfaces

52

Eventory
Provides access to the log knowledge database associated with the InTrust organization.

Syntax

HRESULT Eventory(
[out, retval] IInTrustEventory **ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustEventory** Log knowledge database associated with the InTrust organization.

IInTrustEventory
Provides access to the log knowledge base, which contains rules that govern the transformation of log entries
into repository and event records.

Methods
Eventory
Returns a string representation of the log knowledge base.

Syntax

HRESULT Eventory(
[out, retval] BSTR* bstrEventory

);

Parameters

Name Type Meaning

bstrEventory BSTR* String representation of the log knowledge base.

Logs
Provides access to the log knowledge base entries through an IInTrustEventoryItemCollection.

Syntax

HRESULT Logs(
[out, retval] IInTrustEventoryItemCollection** pVal

);

InTrust 11.3.2 SDK Reference
Interfaces

53

Parameters

Name Type Meaning

pVal IInTrustEventoryItemCollection** Log knowledge base entries.

DataSources
HRESULT DataSources(

[out, retval] IInTrustEventoryItemCollection** pVal
);

Parameters

Name Type Meaning

pVal IInTrustEventoryItemCollection** Log knowledge base entries.

IInTrustEventoryItem
Represents an entry in the log knowledge base.

Methods
Name
Returns the name of the log knowledge database entry.

Syntax

HRESULT Name(
[out, retval] BSTR* bstrName

);

Parameter

Name Type Meaning

bstrName BSTR* Name of the log knowledge database entry.

Rules (out parameter)
Returns the rules defined for the log knowledge database entry. For details about the rule format, see Log
Transformation Rule Format.

Syntax

HRESULT Rules(
[out, retval] BSTR* bstrRules

InTrust 11.3.2 SDK Reference
Interfaces

54

);

Parameter

Name Type Meaning

bstrRules BSTR* Textual representation of the rules defined for the log knowledge database entry.

Rules (in parameter)
Sets the rules defined for the log knowledge database entry. For details about the rule format, see Log
Transformation Rule Format.

Syntax

HRESULT Rules(
[in] BSTR bstrRules

);

Parameter

Name Type Meaning

bstrRules BSTR Textual representation of the rules defined for the log knowledge database entry.

IInTrustEventoryItemCollection
Provides a collection of IInTrustEventoryItem interfaces.

Methods
Item
Gets a log knowledge base entry from the collection by name.

Syntax

HRESULT Item(
[in] BSTR bstrLogName,
[out, retval] IInTrustEventoryItem** ppEventoryItem

);

Parameters

Name Type Meaning

bstrLogName BSTR Name of the log knowledge base entry. This name must exist in the
collection.

InTrust 11.3.2 SDK Reference
Interfaces

55

Name Type Meaning

ppEventoryItem IInTrustEventoryItem
**

The log knowledge base entry.

_NewEnum
Constructs the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameters

Name Type Meaning

pVal LPUNKNOWN* Collection constructor.

Add
Adds the specified entry.

Syntax

HRESULT Add(
[in] BSTR bstrItemName,
[in] BSTR bstrItemRules,
[out, retval] IInTrustEventoryItem** ppEventoryItem

);

Parameters

Name Type Meaning

bstrItemName BSTR Name of the entry to add. The name must be unique.

bstrItemRules BSTR Textual definition of the entry.

ppEventoryItem IInTrustEventoryItem The new log knowledge base entry.

Remove
Removes an entry from the collection by name.

Syntax

HRESULT Remove(
[in] BSTR bstrItemName

);

InTrust 11.3.2 SDK Reference
Interfaces

56

Parameter

Name Type Meaning

bstrItemName BSTR Name of the entry to remove.

IInTrustOrganization
Provides access to an InTrust organization.

Methods
Name
Returns the name of the InTrust organization.

Syntax

HRESULT Name(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR Name of the InTrust organization.

Servers
Provides access to a collection of the InTrust servers in an InTrust organization.

Syntax

HRESULT Servers(
[out, retval] IInTrustServerCollection** ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustServerCollection** Collection of InTrust servers.

Repositories
Provides access to a collection of repositories in an InTrust organization.

InTrust 11.3.2 SDK Reference
Interfaces

57

Syntax

HRESULT Repositories(
[out, retval] IInTrustRepositoryCollection** ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustRepositoryCollection** Collection of repositories.

Eventory
Provides access to the organization-wide log knowledge base. See Log Knowledge Base API for details.

Syntax

HRESULT Eventory(
[out, retval] IInTrustEventory **ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustEventory** Log knowledge base.

IInTrustOrganizationCollection
Provides a collection of all available InTrust organizations.

Methods
Item
Provides access to the specified InTrust organization.

Syntax

HRESULT Item(
[in] BSTR bstrOrganizationIdentity,
[out, retval] IInTrustOrganization**

);

InTrust 11.3.2 SDK Reference
Interfaces

58

Parameters

Name Type Meaning

bstrOrganizationIdentity BSTR Name of the InTrust organization.

IInTrustOrganization** InTrust organization interface.

_NewEnum
References InTrust organizations in a collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Enumerated InTrust organizations.

IInTrustRepository
Provides the searching and writing capabilities of a repository.

Methods
ID
Returns the GUID of the repository.

Syntax

HRESULT ID(
[out, retval] GUID* pID

);

Parameter

Name Type Meaning

pID GUID* GUID of the repository.

Name
Returns the name of the repository.

InTrust 11.3.2 SDK Reference
Interfaces

59

Syntax

HRESULT Name(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR* Name of the repository. The name is not necessarily unique in an organization.

Path
Returns the path to the repository.

Syntax

HRESULT Path(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR* UNC path to the share that contains the repository.

IsIndexingEnabled
Indicates whether indexing is enabled for the repository.

Syntax

HRESULT IsIndexingEnabled(
[out, retval] VARIANT* pVal

);

Parameter

Name Type Meaning

pVal VARIANT* Whether indexing is enabled for the repository.

Inserter
Provides an interface for inserting records into the repository. For details, see Writing Records.

CAUTION: A new inserter is created every time you call this method. It's likely that you only want a
single unique inserter per repository for all of your writing activity.

InTrust 11.3.2 SDK Reference
Interfaces

60

Syntax

HRESULT Inserter(
[out, retval] IRepositoryRecordInserter** ppInserter

);

Parameter

Name Type Meaning

ppInserter IRepositoryRecordInserter** Record-inserting interface associated with a particular repository.

Searcher
Provides an interface for finding records in the repository. For details, see Getting Records.

Syntax

HRESULT Searcher(
[out, retval] IInTrustRepositorySearcher** ppSearcher

);

Parameter

Name Type Meaning

ppSearcher IInTrustRepositorySearcher A searcher interface that accepts search queries and provides
results.

CustomAttributes (getter)
Provides access to the collection (instance of IPropertyCollection) of custom attributes attached to an InTrust
repository (instances of IProperty).

Syntax

HRESULT CustomAttributes(
[out, retval] IPropertyCollection** pVal

);

Parameter

Name Type Meaning

pVal IPropertyCollection** Collection of custom attributes attached to the repository.

CustomAttributes (setter)
Applies a collection (instance of IPropertyCollection) of custom attributes attached to an InTrust repository
(instances of IProperty).

InTrust 11.3.2 SDK Reference
Interfaces

61

Syntax

HRESULT CustomAttributes(
[in] IPropertyCollection* pVal

);

Parameter

Name Type Meaning

pVal IPropertyCollection* Custom attribute collection to attach to the repository.

ForwardingProperties (getter)
Provides access to the collection (instance of IPropertyCollection) of event forwarding properties configured for
an InTrust repository (instances of IProperty).

Syntax

HRESULT ForwardingProperties(
[out, retval] IPropertyCollection** ppForwardingProperties

);

Parameter

Name Type Meaning

ppForwardingProperties IPropertyCollection
**

Collection of event forwarding properties associated with the
repository.

ForwardingProperties (setter)
Applies a collection (instance of IPropertyCollection) of event forwarding properties configured for an InTrust
repository (instances of IProperty).

Syntax

HRESULT ForwardingProperties(
[out, retval] IPropertyCollection* pProperties

);

Parameter

Name Type Meaning

pProperties IPropertyCollection* Collection of event forwarding properties to associate with the repository.

IInTrustRepositoryCollection
Provides a collection of all repositories available in the InTrust organization.

InTrust 11.3.2 SDK Reference
Interfaces

62

Methods
Item
Gets the specified repository from a collection.

Syntax

HRESULT Item(
[in] BSTR bstrRepositoryIdentity,
[out, retval] IInTrustRepository**

);

Parameters

Name Type Meaning

bstrRepositoryIdentity BSTR A piece of information that identifies the repository. You can
specify one of the following:

l Repository name

l Repository GUID

l UNC path to the repository share

The Item method tries to interpret its input parameter as each of
these identifiers, in that order.

IInTrustRepository
**

Repository interface.

Add
Creates a repository with the specified properties in a collection.

CAUTION: For this operation to succeed, the account you are using must be an InTrust organization
administrator. To configure this privilege for the account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

Syntax

HRESULT Add(
[in] BSTR bstrRepositoryName,
[in] BSTR bstrRepositoryPath,
[in] BSTR bstrUserName,
[in] BSTR bUserPassword,
[in] BSTR bstrIndexServer,
[out, retval] IInTrustRepository**

);

InTrust 11.3.2 SDK Reference
Interfaces

63

Parameters

Name Type Meaning

bstrRepositoryName BSTR Name of the repository.

bstrRepositoryPath BSTR UNC path to the share that contains the repository.

bstrUserName BSTR User name of the account to use for connection to the repository
(for both searching and writing). This account must be a member
of the local AMS Readers group on the InTrust server that
manages the repository, specified by the bstrIndexServer
parameter.
If bstrUserName is empty, the account set for the InTrust server
will be used for connection.

bUserPassword BSTR Password of the account specified by the bstrUserName
parameter.

bstrIndexServer BSTR Name of the InTrust server that manages the index for the
repository.

IInTrustRepository
**

Repository interface.

Remove
Removes the specified repository from the collection, deleting it from the InTrust organization configuration.

CAUTION: For this operation to succeed, the account you are using must be an InTrust organization
administrator. To configure this privilege for the account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

Syntax

HRESULT Remove(
[in] BSTR bstrRepositoryIdentity

);

Parameter

Name Type Meaning

bstrRepositoryIdentity BSTR A piece of information that identifies the repository. You can specify one of the
following:

l Repository name

l Repository GUID

l UNC path to the repository share

The Item method tries to interpret its input parameter as each of these
identifiers, in that order.

InTrust 11.3.2 SDK Reference
Interfaces

64

_NewEnum
References repositories in a collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Access to repositories in a collection.

IInTrustRepositorySearcher
Provides repository search capabilities.

Method
Search
Runs a repository search using the specified query.

Syntax

HRESULT ID(
[in] BSTR rel_query,
[out] IObservable** search_object

);

Parameters

Name Type Meaning

rel_query BSTR Search query.

search_object IObservable Interface that you can subscribe to for search results.

IInTrustServer
Provides access to an InTrust server.

InTrust 11.3.2 SDK Reference
Interfaces

65

Methods
Name
Returns the name of the InTrust server.

Syntax

HRESULT Name(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR* Name of the InTrust server.

Organization
The InTrust organization that the InTrust server belongs to.

Syntax

HRESULT Organization(
[out, retval] IInTrustOrganization** pVal

);

Parameter

Name Type Meaning

pVal IInTrustOrganization** InTrust organization interface.

IInTrustServerCollection
Provides a collection of all InTrust servers in the InTrust organization.

Methods
Item
Provides access to the specified InTrust server.

InTrust 11.3.2 SDK Reference
Interfaces

66

Syntax

HRESULT Item(
[in] BSTR bstrServerIdentity,
[out, retval] IInTrustServer**

);

Parameters

Name Type Meaning

bstrServerIdentity BSTR Name of the InTrust server.

IInTrustServer** InTrust server interface.

_NewEnum
References InTrust servers in a collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Enumerated InTrust servers.

IMultiRepositorySearcher
A container for search objects that lets you search in all of the specified repositories simultaneously.

CAUTION: This container is optimized for shared use. Therefore, it is strongly recommended that
you create only one IMultiRepositorySearcher and reuse it rather than creating different
IMultiRepositorySearcher instances for different search queries and sets of repositories.

Methods
MakeMultiSearchObject
Creates a search object that uses multiple repositories at once.

Syntax

HRESULT MakeMultiSearchObject(
[in] BSTR rel_query,
[in] SAFEARRAY(IDispatch) psaSeachers,
[out, retval] IObservable** search_object

InTrust 11.3.2 SDK Reference
Interfaces

67

);

Parameters

Name Type Meaning

rel_query BSTR Search query.

psaSeachers SAFEARRAY(IDispatch) Searcher interfaces for the repositories you want to search in.

search_object IObservable** Interface that provides search functionality.

IMultiRepositorySearcherFactory
Creates an instance of IMultiRepositorySearcher.

CreateMultiRepositorySearcher
Creates the IMultiRepositorySearcher.

Syntax

HRESULT CreateMultiRepositorySearcher(
[in] VARIANT eventory_xml,
[out, retval] IMultiRepositorySearcher** rep_searcher

);

Parameters

Name Type Meaning

eventory_
xml

VARIANT String representation of the log knowledge base to use with the multi-
repository searches. To use the fallback knowledge base, specify
null.

rep_
searcher

IMultiRepositorySearcher
**

The searcher interface capable of working with multiple repositories
at once.

IObservable
Defines a provider for push-based notification.

InTrust 11.3.2 SDK Reference
Interfaces

68

Method
Subscribe

Syntax

HRESULT Subscribe(
[in] IObserver* observer,
[out] ICookie** cookie

);

Parameters

Name Type Meaning

observer IObserver* Source of push-based notifications.

cookie ICookie** Keeps the search active while present.

IObserver
Provides a mechanism for receiving push-based notifications. You need to create your own implementation of
this interface.

Methods
OnDone
Notifies the observer that the provider has finished sending push-based notifications.

Syntax

void OnDone();

OnError
Notifies the observer that the provider has experienced an error condition.

Syntax

void OnError(

[in] HRESULT hr,

[in] BSTR description

);

InTrust 11.3.2 SDK Reference
Interfaces

69

Parameters

Name Type Meaning

hr HRESULT Operation result.

description BSTR Additional information about the error.

OnNext
Provides the observer with new data.

Syntax

void OnNext(

[in] IUnknown* data

);

Parameter

Name Type Meaning

data IUnknown* The current notification information.

IProperty
Represents a property attached to an InTrust repository. A property is a way to tag repositories for
arbitrary purposes.

Methods
PropertyName (setter)
Sets the name of the property.

Syntax

HRESULT PropertyName(
[in] BSTR pVal

);

Parameter

Name Type Meaning

pVal BSTR Name of the property. The name must be unique in the property collection (see
IPropertyCollection).

InTrust 11.3.2 SDK Reference
Interfaces

70

PropertyValue (getter)
Returns the value of the property.

Syntax

HRESULT PropertyValue(
[out, retval] VARIANT *pVal

);

Parameter

Name Type Meaning

pVal VARIANT* Value of the property.

PropertyValue (setter)
Sets the value of the property.

Syntax

HRESULT PropertyValue(
[in] VARIANT pVal

);

Parameter

Name Type Meaning

pVal VARIANT Value of the property.

PropertyName
Returns the name of the property.

NOTE: There is no setter method for the name of a property. Instead of renaming an existing property,
you need to create a new one in the property collection (IPropertyCollection) and assign it the value you
need. The old property can be deleted using the collection's Remove method.

Syntax

HRESULT PropertyName(
[out, retval] BSTR *pVal

);

Parameter

Name Type Meaning

pVal BSTR* Name of the property.

InTrust 11.3.2 SDK Reference
Interfaces

71

IPropertyCollection
Represents a collection of properties associated with an InTrust repository. Access to the collections is gained
through specialized methods of the IInTrustRepository interface (such as CustomAttributes and
ForwardingProperties), which filter the available properties by purpose.

Methods
Item
Gets a property from the collection by name.

Syntax

HRESULT Item(
[in] BSTR bstrPropertyName,
[out, retval] IProperty** ppProperty

);

Parameters

Name Type Meaning

bstrPropertyName BSTR Name of the property. This name must exist in the collection.

ppProperty IProperty** The property.

_NewEnum
Constructs the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameters

Name Type Meaning

pVal LPUNKNOWN* Collection constructor.

Set
Sets the specified property if it exists or creates it if it doesn't.

InTrust 11.3.2 SDK Reference
Interfaces

72

Syntax

HRESULT Set(
[in] BSTR bstrPropertyName,

[in] VARIANT varPropertyValue
);

Parameters

Name Type Meaning

bstrPropertyName BSTR Name of the property to add. The name must be unique.

varPropertyValue BSTR The value to set.

Remove
Removes a property from the collection by name.

Syntax

HRESULT Remove(
[in] BSTR bstrPropertyName

);

Parameter

Name Type Meaning

bstrPropertyName BSTR Name of the property to remove.

IRepositoryRecordInserter
Provides write access to the repository that it is associated with and manages one or more
IRepositoryRecordInserterLight interfaces, which do the actual writing. For each
IRepositoryRecordInserterLight, it also stores predefined field values that are the same in all records written by
that IRepositoryRecordInserterLight.
Incoming records are pushed to the repository at regular intervals. However, you can force an immediate write
by calling the Commit method.

Methods
BindFields
Sets the values of the path-specifying fields for records that will be written to the same repository file.

Syntax

HRESULT BindFields(

InTrust 11.3.2 SDK Reference
Interfaces

73

[in] tags path,

[out, retval] IRepositoryRecordInserterLight**

);

Parameters

Name Type Meaning

path tags The field record values that you specify here are supposed to be
the same for all records generated by the
IRepositoryRecordInserterLight that will be initialized.

IRepositoryRecordInserterLight
**

Record-inserting interface with some record field values
predefined.

PutRecords
Writes the specified records to the repository asynchronously.

Syntax

HRESULT PutRecords(

[in] SAFEARRAY(struct record) records

);

Parameter

Name Type Meaning

records SAFEARRAY(struct record) Records to put in the repository.

PutRecords2
Writes the specified records to the repository asynchronously. This method is similar to PutRecords, except the
type of the input parameter. Using the IBulkRecord interface for input makes it possible to write event records
converted by IEventToRecordFormatter. For details, see Event Record Data Structures.

Syntax

HRESULT PutRecords2(

[in] IBulkRecord* pBulkRecord

);

Parameter

Name Type Meaning

records IBulkRecord* pBulkRecord Records (normally, converted from events) to put in the repository.

InTrust 11.3.2 SDK Reference
Interfaces

74

Commit
Performs all deferred record writes synchronously.

CAUTION: This operation is resource-intensive and should not be used needlessly. For example,
committing after each record is strongly discouraged. InTrust commits records automatically every
60 seconds.
Forcing a commit is acceptable in situations like the following:

l You need to confirm that a batch of events or records has safely arrived in the repository.

l You are writing events or records out of order. See the corresponding note in Writing Events.

Syntax

HRESULT Commit();

IRepositoryRecordInserterLight
Generates valid record structures from predefined and significant values and writes them to the repository.

NOTE:IRepositoryRecordInserterLight or IRepositoryRecordInserter: when to use which?
Use IRepositoryRecordInserterLight if you need to write large numbers of records with coinciding values
in specific fields. Otherwise, using IRepositoryRecordInserter should be more efficient.

Method
PutRecords

Syntax

HRESULT PutRecords(

[in] SAFEARRAY(struct contents) recordFields

);

Parameter

Name Type Meaning

recordFields SAFEARRAY
(struct
contents)

Field value structures to convert to records. Missing fields will be filled in based
on the tags structure instance associated with this
IRepositoryRecordInserterLight.

InTrust 11.3.2 SDK Reference
Interfaces

75

About us

We are more than just a name
We are on a quest to make your information technology work harder for you. That is why we build community-
driven software solutions that help you spend less time on IT administration and more time on business
innovation. We help you modernize your data center, get you to the cloud quicker and provide the expertise,
security and accessibility you need to grow your data-driven business. Combined with Quest’s invitation to the
global community to be a part of its innovation, and our firm commitment to ensuring customer satisfaction, we
continue to deliver solutions that have a real impact on our customers today and leave a legacy we are proud of.
We are challenging the status quo by transforming into a new software company. And as your partner, we work
tirelessly to make sure your information technology is designed for you and by you. This is our mission, and we
are in this together. Welcome to a new Quest. You are invited to Join the Innovation™.

Our brand, our vision. Together.
Our logo reflects our story: innovation, community and support. An important part of this story begins with the
letter Q. It is a perfect circle, representing our commitment to technological precision and strength. The space in
the Q itself symbolizes our need to add the missing piece — you — to the community, to the new Quest.

Contacting Quest
For sales or other inquiries, visit www.quest.com/contact.

Technical support resources
Technical support is available to Quest customers with a valid maintenance contract and customers who have
trial versions. You can access the Quest Support Portal at https://support.quest.com.
The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours
a day, 365 days a year. The Support Portal enables you to:

l Submit and manage a Service Request

l View Knowledge Base articles

l Sign up for product notifications

l Download software and technical documentation

l View how-to-videos

l Engage in community discussions

l Chat with support engineers online

l View services to assist you with your product

InTrust 11.3.2 SDK Reference
About us

76

https://www.quest.com/contact
https://support.quest.com/

	InTrust SDK Overview
	Requirements
	Required Permissions
	Standalone Setup
	Configuring C# References
	First Steps

	Repository Services API
	Connecting to a Repository
	Overview of Repository Access
	Examples
	Details

	Getting and Putting Data
	Overview
	Writing
	Reading
	Getting Records
	Example (C#)

	Getting Events
	Example (C#)
	Composing REL Queries
	Searchable Event and Record Fields

	Writing Records
	Approach 1: Writing Whole Record Structures
	Approach 2: Splitting Records for Writing
	Example (C#)

	Writing Events
	Sort Order for Writing
	Out-of-Order Writing

	Repository Record Data Structures
	tags
	contents
	contents2
	record
	record2
	Recommendations on Setting Tags

	Event Record Data Structures
	base_event
	event_with_read_extensions
	named_string
	insertion_string
	augmented_insertion_string
	event_with_extensions
	event_with_extensions2
	resolved_string

	Creating and Removing Repositories
	Working with Repository Properties
	Using Custom Attributes
	Example (C#)

	Using Forwarding Properties

	Getting Started with Repository Services API
	Testing Repository Searching
	Testing Event Writing
	Next Steps

	Log Knowledge Base API
	Example
	Log Transformation Rule Format

	Interfaces
	IBulkEventWithReadExtensions
	Method

	IBulkRecord
	Method

	IBulkRecord2
	Method

	ICookie
	Method

	IEventToRecordFormatter
	Method

	IIdleRepository
	Method

	IIdleRepositoryFactory
	Method

	IIndexManager
	Methods

	IIndexManagerFactory
	Methods

	IInTrustEnvironment
	Methods

	IInTrustEventory
	Methods

	IInTrustEventoryItem
	Methods

	IInTrustEventoryItemCollection
	Methods

	IInTrustOrganization
	Methods

	IInTrustOrganizationCollection
	Methods

	IInTrustRepository
	Methods

	IInTrustRepositoryCollection
	Methods

	IInTrustRepositorySearcher
	Method

	IInTrustServer
	Methods

	IInTrustServerCollection
	Methods

	IMultiRepositorySearcher
	Methods

	IMultiRepositorySearcherFactory
	IObservable
	Method

	IObserver
	Methods

	IProperty
	Methods

	IPropertyCollection
	Methods

	IRepositoryRecordInserter
	Methods

	IRepositoryRecordInserterLight
	Method

	About us
	Contacting Quest
	Technical support resources

