
Quest® InTrust 11.4.2

Customization Kit

© 2020 Quest Software Inc. ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a
software license or nondisclosure agreement. This softwaremaybe used or copied only in accordance with the termsof the
applicable agreement. No part of this guidemaybe reproduced or transmitted in any form or byanymeans, electronic or
mechanical, including photocopying and recording for anypurpose other than the purchaser’s personal use without the written
permission of Quest Software Inc.

The information in this document is provided in connection with Quest Software products. No license, expressor implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest Software
products. EXCEPT ASSET FORTH IN THETERMSANDCONDITIONSASSPECIFIED IN THELICENSEAGREEMENT FOR
THISPRODUCT, QUEST SOFTWAREASSUMESNOLIABILITYWHATSOEVER ANDDISCLAIMSANYEXPRESS, IMPLIED
OR STATUTORYWARRANTYRELATINGTO ITSPRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTYOF MERCHANTABILITY, FITNESSFOR APARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NOEVENT
SHALLQUEST SOFTWAREBELIABLEFOR ANYDIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIALOR
INCIDENTALDAMAGES (INCLUDING,WITHOUT LIMITATION, DAMAGESFOR LOSSOF PROFITS, BUSINESS
INTERRUPTIONOR LOSSOF INFORMATION) ARISINGOUT OF THEUSEOR INABILITYTOUSETHISDOCUMENT,
EVEN IF QUEST SOFTWAREHASBEEN ADVISEDOF THEPOSSIBILITYOF SUCHDAMAGES. Quest Softwaremakesno
representationsor warrantieswith respect to the accuracyor completenessof the contents of this document and reserves the right
to make changes to specificationsand product descriptionsat any time without notice. Quest Software doesnot make any
commitment to update the information contained in this document.

If you have anyquestions regarding your potential use of thismaterial, contact:

Quest Software Inc.

Attn: LEGALDept

4 PolarisWay

Aliso Viejo, CA 92656

Refer to our Web site (https://www.quest.com) for regional and international office information.
Patents

Quest Software is proud of our advanced technology. Patents and pending patentsmayapply to this product. For themost current
information about applicable patents for this product, please visit our website at https://www.quest.com/legal.
Trademarks

Quest, the Quest logo, and Join the Innovation are trademarksand registered trademarksof Quest Software Inc. For a complete
list of Quest marks, visit https://www.quest.com/legal/trademark-information.aspx. All other trademarksand registered trademarks
are property of their respective owners.
Legend

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data if instructions
are not followed.

IMPORTANT, NOTE, TIP,MOBILE, or VIDEO: An information icon indicates supporting information.

InTrust Customization Kit
Updated - March 2020
Version - 11.4.2

https://www.quest.com/
https://www.quest.com/legal
https://www.quest.com/legal/trademark-information.aspx

Contents

InTrust Customization Overview 6

InTrust Script Objects 7
Parameters 8
Script Body 8
Using Parameters in Script Code 8
ECMAScript 8
JScript and VBScript 8
PowerShell 8

Customizable Parameters 10
AccessType 10
Getting the Access Type Selector 11

Text 13
Number 13
List 13
DateTimeRange 13
ExpectedTime 13
RangeList 14
EventType 14
Filter 14
Choice 15
Password 15

InTrust Server Tracing 17
Configuration File Format 17

Distributing Files to Agent Computers 18
Case Study: Enabling Tracing onMultiple Computers 19
Objective 19
Solution 19
Details 19

How to... 20
Working with Data Sources 20
Topics 20
Creating a Data Source 20
Text Log Data Sources 20
Custom Scripted Data Sources 21

InTrust 11.4.2 Customization Kit 3

Generating Events 21
Typical Custom Text Log Data Source Logic 22
Glossary 22
Typical Usage 22

Customizing Data Source Filters 24
Event Fields 25

Creating Rules 26
Importing and Exporting Rules 28
See Also 28
Rule Structure 29
Specifying Arguments 29
Pre-Filtering 31
Matching 31

Examples 32
ECMAScript 33
REL 34

Scripting Response Actions 34
"Execute Script" Response Action 35

Enumerating Sites 36

Language Reference 38
ECMAScript 38
JScript 38
REL 38
Reference 38
Words 39
Formal LanguageGrammar 39

Expressions 42
Expression Types 42

Functions 44
Custom Functions 44
Built-In Function Library 45

PowerShell Script 57

Object Library 58
Reference 58
Standard Objects 58
Emulated Standard Objects 58
Example 59
ActiveXObject 60
File 60
FileSystemObject 61
Folder 62
RegKey 62

InTrust 11.4.2 Customization Kit 4

Example 63
ScriptExecObject 63
ShellObject 64
Example 64

SystemInformationObject 65
Example 65

TextStream 66
TimeOfDayInfoObject 66

InTrust-Specific Objects 67
Glossary 67
Generic Objects 68
Audit Script Object Model 68
Script Callbacks 68
Provider callbacks 68
Comparer callback 69

Audit Script Engine and Audit Script Host Cooperation 69
Audit Script Position Processor and Audit Script Host Cooperation 70
Error Reporting 70
ADCEnvironment 71
Methods 71
Example 72

AuditProvider 72
Example 73

ErrorInfo 73
Example 73

Event 73
Example 73

GlobalObject 73
GlobalState 74
Example 74

Position 74
Example 74

Reference 74
IDL example 75
JScript example 75

ScriptState 75
ECMAScript Example 75
JScript Example 76

About us 77
Contacting Quest 77
Technical support resources 77

InTrust 11.4.2 Customization Kit 5

InTrust Customization Overview
By using scripts and Quest InTrust as the framework to execute them, you can enhance the InTrust toolset.
Scripting extends the following areas of InTrust functionality:

l Creation of real-time monitoring rules

l Creation of scripted data sources (primarily for real-time monitoring)

l Fine-tuning data sources for custom event logs in text format (for auditing purposes)

l Editing filters for gathering, consolidation and import policies

l Configuring custom response actions for rules

l Enumeration of sites

InTrust 11.4.2 Customization Kit
InTrust Customization Overview 6

InTrust Script Objects
InTrust script objects provide logic and automation facilities accessible from different parts of InTrust: response
actions in real-time monitoring rules, advanced site enumeration algorithms, and so on. In InTrust Manager,
script objects are located in Configuration | Advanced | Scripts, and contain the following:

l Parameters used in the body of the script but defined outside it

l Actual script code

InTrust 11.4.2 Customization Kit
InTrust Script Objects 7

Parameters
Parameters are variables that the script exposes to its callers. For example, if a script is a response action
designed to disable a user account, it must get the user name as a parameter.
Parameters are specified in the properties dialog box of the script object. The parameter list must include all
parameters that the script expects to get from the rule. Use the Add, Remove and Edit buttons to work with the
parameter list. For details about supported parameter types, see Customizable Parameters.

Script Body
To supply or edit the script code, open the properties of the script object you need and click the Edit button with
the "Edit the script" label next to it. Use the scripting language selected from the Language list box.

Using Parameters in Script Code
Scripts retrieve this parameter differently, depending on the scripting language used.

ECMAScript
Access the keys of the Parameters object, which is defined automatically. Use parameter names (such as
CurrentComputer) as the keys.
Example:

var strComputerName = Parameters["CurrentComputer"];

As long as the CurrentComputer parameter is included in the parameter list of the script object, the value
is returned.

JScript and VBScript
Call the Parameters method of the ScriptContext object and pass the parameter name (such as
CurrentComputer) as the argument.
Example (JScript):

ScriptContext.Parameters("CurrentComputer")

As long as the CurrentComputer parameter is included in the parameter list of the script object, this is
a valid call.

PowerShell
You cannot use the raw parameter ID (such as CurrentComputer) due to PowerShell syntax peculiarities. The
parameter variable name must start with a dollar sign just like any PowerShell variable (in this case,
$CurrentComputer).
To initialize parameters, use the param statement at the start of the script. For example, if the parameters User
and Domain are defined for your PowerShell script, then begin it as follows:

InTrust 11.4.2 Customization Kit
InTrust Script Objects 8

param(
 $User,
 $Domain
)

InTrust 11.4.2 Customization Kit
InTrust Script Objects 9

Customizable Parameters
Script parameters can be exposed by several types of InTrust objects: rules, script objects, and data source
filters. This topic describes the supported data types for parameters.

AccessType
Lets you specify access types used by events in Windows logs. In the user interface, this type is represented by
a check box list in a dedicated selector dialog box.
Example: "*%%1023*", "*%%1111*", "*%%2222*"

InTrust 11.4.2 Customization Kit
Customizable Parameters 10

Here, numbers correspond to access type IDs.

Getting the Access Type Selector
InTrust provides an access type selector dialog box so that you don't have to search for references and look
up the types you need. To make it available, start by editing the XML rule definition by clicking Advanced on
the Matching tab in the rule properties. Insert an empty parameter of the AccessType class, as in the
following example:

InTrust 11.4.2 Customization Kit
Customizable Parameters 11

<argument displayname="Access Types" name="Access_Types" class="AccessType"
description="Access types to include">

 <value></value>

</argument>

Save the XML definition. Back on the Matching tab, select your new AccessType parameter and click Edit. The
Edit Access Type dialog box is displayed with a list of acceptable values that you can select.

InTrust 11.4.2 Customization Kit
Customizable Parameters 12

Text
Example: Some text.

Number
Example: 512.

List
Comma-separated list. Example: "dog", "cat", "bird". Commas and quotation marks cannot be used inside
list elements.

DateTimeRange
This type has the following format:
"yyyy/mm/dd hh:mm:ss"
The number of digits in a field is not fixed. You do not have to insert leading zeros. You can omit either the date
part (yyyy/mm/dd) or the time part (hh:mm:ss) but not both at once. If you omit the date, do not leave a leading
white space.
The mm (month), dd (day), mm (minute) and ss (second) fields can be omitted. In this case, they are
assumed to be 0.
Example:
"0/0 1:0" is the same as "0/0 1" or "1", meaning one hour.
If you omit the entire date, the minutes and the seconds, the specified number is assumed to be a date. For
example, if only the number 1 is specified, it is treated as a year, although you might expect it to mean an hour.
To determine which part is omitted, look at the separator characters (/ or :).

ExpectedTime
Time at which an event is expected in a "missing event" rule. Specified in the cron format, meaning five numbers
separated by spaces or tabs. The order is as follows:

l minute (0-59),

l hour (0-23),

l day of the month (1-31),

l month of the year (1-12),

l day of the week (0-6 with 0=Sunday).

InTrust 11.4.2 Customization Kit
Customizable Parameters 13

Example: "0 1 * * 4,6", "1:00". Here, the event is expected every Wednesday and Saturday at 1 AM.

RangeList
This type has the following format:
"min_1-max_1,min_2-max_2,...,min_N-max_N"
Here,min_x is the minimum value in a range;max_x is the maximum value. The maximum value and its
leading hyphen are optional. Both the minimum and the maximum are non-negative integers.

EventType
This type is a list of values enclosed in quotation marks for the EventType field in Windows logs. The selection
dialog box for this parameter is shown in the screenshot:

This selection corresponds to the value "0,2,8".
In the XML markup for REL-based rules, this type can be used as in the following example:

in_range(EventType, <parameter name="MyEventTypes"/>)

Filter
This type of argument is a container for an expression, which can optionally have its own arguments.
The referenced arguments are enclosed in the <filter> tag pair, as follows:

<argument name="My Event Filter" class="Filter">
 <value>
 <filter type="EventFilter" version="1.0">
 <arguments>
 ...
 </arguments>
 </filter>

InTrust 11.4.2 Customization Kit
Customizable Parameters 14

 </value>
</argument>

For a usage example, create a rule for a Windows event log or Syslog based on the "Single event" template and
using one of the predefined filters. View the resulting markup.

Choice
This type lets you select one or more values from a list. Use the "List" type to represent the choice in the user
interface, as follows: type = "List".
Usage example:

<argument usedefault="true" name="sample_arg" class="Choice" type="List">
 <choices>
 "arg_value1", "arg_value2", "arg_value3", "arg_value4"
 </choices>
 <value>
 "arg_value2"
 </value>
 <default description="descr">
 "arg_value1", "arg_value2"
 </default>
</argument>

The <choices> tag pair stores the list of possible values that you can select from.

<filter type="EventFilter" version="1.0">
 <arguments>
 <argument usedefault="false" name="sample_arg" description="" class="guid">
 <value>
 ...
 </value>
 <default description="descr">
 Sample description
 </default>
 </argument>
 </arguments>
 <body>
 ...
 <parameter name="sample_arg"/>
 ...
 </body>
</filter>

Password
This type lets you securely specify a password for an authentication operation. Do not specify the password
directly in the XML code. The implementation of this parameter type permits password editing only in a
graphical prompt.

InTrust 11.4.2 Customization Kit
Customizable Parameters 15

<argument displayname="password" name="password" description="Password"
class="Password">
 <value/>
</argument>

InTrust 11.4.2 Customization Kit
Customizable Parameters 16

InTrust Server Tracing
InTrust Server provides tracing capabilities in most of its components. Tracing is enabled and disabled for
particular components in the adctracer.ini file.
For InTrust Server, the location of this file is Server\ADC\adctracer.ini in the folder where InTrust Server is
installed. For InTrust agents, the location is ADCAgent\adctracer.ini on the processed computer.
The first line of the file specifies the location of the traces. The default locations are as follows:

l InTrust Server traces are written to Server\ADC\tracing in the folder where InTrust Server is installed.

l InTrust agent traces are written to ADCAgent\tracing on the processed computer.

Configuration File Format
The entries in the adctracer.ini file use the following format:

ComponentName=Number

Here, ComponentName is the name of the InTrust component for which you want to see traces; Number is the
tracing level. Example:

MSNNSiteProvider=40
RELMatcher=40

By default, all entries are commented out with the number sign (#). Uncomment those entries for which you
need traces.
The adctracer.ini file sets the default tracing level for each component. For the trace to be recorded, the tracing
level in the trace-writing function must be less than the value specified in adctracer.ini. For example, if you
specify level 50 in a tracing function in your site enumeration script, and the MSNNSiteProvider entry is set to
the default value of 40, your trace will not be recorded.

InTrust 11.4.2 Customization Kit
InTrust Server Tracing 17

Distributing Files to Agent
Computers

You can use the file distribution mechanism in InTrust rules to copy files to agent computers. Take the
following steps:

1. Create a site that includes the computers you need.

2. In Configuration | Advanced | Scripts, create a script object that defines the OnInstall and OnUninstall
functions. Example:
function OnInstall()
{
var objEnv = new ADCEnvironment();
var srcpath = objEnv.ExpandEnvironmentString("%ADC_INSTALL_
PATH%\\data\\dda\\%adc_org_id%");
<where_to_put_the_file>";
var fso = new ActiveXObject("Scripting.FileSystemObject");
<file_name>",destpath+"\\<file_name>",1);
}
function OnUnInstall()
{
}
The <file_name> placeholder stands for the name of the file you want to distribute. All distributed files
first arrive in the %ADC_INSTALL_PATH%\data\dda\%adc_org_id% folder, where:

l %ADC_INSTALL_PATH% is a local environment variable storing the agent installation folder

l %adc_org_id% is an InTrust organization parameter specifying the ID of the current InTrust
organization

3. In InTrust Manager, go to Configuration | Advanced | Distributable Files and add the file you need to
distribute. In the properties of the file object, select the Run this script upon module delivery to the
agent side option, and select the script from the previous step.

4. Create a rule based on any Windows log data source, and add to it the file from the previous step as a
distributable module. Enable the rule.

5. Create a real-time monitoring policy that applies your rule to the computers you want to copy the file to.
Activate the policy.

You can adapt this procedure to your specific needs: for example, add actions besides file copying or
parameterize the file destination path, and so on.

InTrust 11.4.2 Customization Kit
Distributing Files to Agent Computers 18

Case Study: Enabling Tracing on
Multiple Computers

Objective
Automatically enable tracing on specific computers.

Solution
Distribute the adctracer.ini file (see InTrust Server Tracing), which has been edited to enable tracing.

Details
This procedure is based on the generic steps described above, so refer to them for more information.

1. Make a copy of an existing adctracer.ini file, and edit the parameters in it as necessary.

2. Create a site with the computers you need.

3. Create a script object with the following code:
function OnInstall()
{
var objEnv = new ADCEnvironment();
var srcpath = objEnv.ExpandEnvironmentString("%ADC_INSTALL_PATH%\\data\\dda\\
{42D329C8-7150-485B-90F1-8FA1D224A767}");
Trace(40, "Source Path: " + srcpath);
var destpath = objEnv.ExpandEnvironmentString("%ADC_INSTALL_PATH%");
Trace(40, "Destination Path: " + destpath);
var fso = new ActiveXObject("Scripting.FileSystemObject");
Trace(40, "Copying " + srcpath+"\\adctracer.ini"+" to
"+destpath+"\\adctracer.ini");
fso.CopyFile(srcpath+"\\adctracer.ini",destpath+"\\adctracer.ini",1);
}
function OnUnInstall()
{
}

4. Add your copy of adctracer.ini as a distributable file, and associate your script with it.

5. Create and enable a rule that provides the file.

6. Create and activate a real-time monitoring policy that specifies the computers you need.

InTrust 11.4.2 Customization Kit
Distributing Files to Agent Computers 19

How to...
l Work with Data Sources

l Create Rules

l Script Response Actions

l Enumerate Sites

Working with Data Sources
Data sources are InTrust's representations of the event logs it works with. One of the InTrust data source types is
the Script Event Provider.
This data source is actually a scripting component that InTrust executes periodically for auditing and real-time
monitoring purposes. Scripts are meant to return one or more event records with filled-in fields. However, the
initial information that the scripts get does not exist in event format.
The format your script works with is up to you. For example, the script can analyze text files.

Topics
See the following topics for details:

l Creating a Data Source

l Generating Events

l Typical Custom Text Log Data Source Logic

l Customizing Data Source Filters

l Event Fields

Creating a Data Source
If you want to create your custom data source from scratch, InTrust provides two starting points for convenience,
depending on what you want the data source to do:

l Analyze text logs or other text files

l Perform arbitrary tasks that go beyond text file analysis

Text Log Data Sources
File-processing scripts are state-based. Such a script checks whether a file is present, or periodically parses a
file and reconstructs events from the file changes it detects.
One of the data source types is the general-purpose custom text log data source. It is implemented as a script
that processes specified files for auditing purposes.

InTrust 11.4.2 Customization Kit
How to... 20

You cannot specify the desired script directly. You must first create an outline for the data source in either Basic
or Advanced mode. For more information about text log data source creation modes, see Auditing Custom Logs.
Data sources completed in Raw mode give you the advantage of easy flow control. Unlike Advanced mode, you
do not have to rely on consecutive regular expressions and their order. You can introduce conditional jumps
and eliminate regular expressions altogether. This makes Raw mode more suitable for many situations,
including markup parsing.
Automatic data source creation gives you a starting point and spares you the effort of outlining the script
structure manually. After you have created the initial data source, do the following:

1. Open the properties of the data source.

2. On the Settings tab, click Convert to and select Raw.

3. Edit the resulting script using the code editor.

Custom Scripted Data Sources
Custom data sources are defined in ECMAScript and processed by InTrust agents.

To create a scripted data source

1. Expand the Configuration node in the InTrust Manager snap-in.

2. Right-click Data Sources and select New Data Source to start the New Data Source wizard.

3. Select the Script Event Provider type and complete the wizard.

NOTE: One of the settings you can change in the wizard is the choice of scripting language. The option
has no effect in this case, and the code you supply is always treated as ECMAScript. This is a known
InTrust Manager issue that will be fixed later.

The wizard prompts you for the following information:

l The script code
Supply a script that does the work you need.

l How often the script executes
Frequent launches are suitable for real-time monitoring uses. For data collection, the script does not
have to run very frequently.

l Script parameters
Parameters are values that can be set externally without modifying the script. They are set in the user
interface, and the values are stored in script variables. Script parameters are meant for easy access to
the script's configurable portions.

Generating Events
To generate an event for InTrust to process, a data source script should do the following:

1. Create one or more event structures using the CreateEvent() function.

2. Fill in the fields of the events based on data analysis results.

3. Pass the events on with the Submit() method.

The CreateEvent() function does not have any arguments. Use the function as follows:

InTrust 11.4.2 Customization Kit
How to... 21

https://support.quest.com/technical-documents/intrust/11.4.2/auditing-custom-logs-with-intrust

var myEvent = CreateEvent();
//myEvent now stores the event structure

After making the event accessible through a variable, you can fill in the event fields with values. The fields can
be either predefined or created "on the fly". By convention, the names of some predefined fields start with
underscore characters (_). Such fields should not be edited.
The predefined event fields are listed in Event Fields.
The following is an ECMAScript example of field-processing operation:

myEvent["MyField"] = "myValue";
// Creates the MyField field
// and writes the value "myValue" to it
//
myEvent.MyField = "myValue";
// Does the same as the previous example

In Windows Script Host languages, the syntax for setting field values differs. Here is a JScript example:

myEvent.Values("MyField") = "myValue";
// Creates and fills in a custom field

Before you submit an event from a script in ECMAScript, make sure the TimeWritten and TimeGenerated
fields are set.
Like CreateEvent(), the Submit() method does not take any arguments. Use it as in the following example:

myEvent.Submit();

The events that scripted data sources submit are passed on to real-time monitoring rules or cached.

Typical Custom Text Log Data Source Logic

Glossary
The audit script host provides access to scripting objects specific to InTrust auditing. The terms audit script host
and GenericScriptProvider can be used interchangeably.
The audit script engine is the intermediary between the audit script host and the computer where the
script is running.
The audit script object model is exposed by the script engine to the scripts.
The audit script position processor is the object that executes the position comparer script.

Typical Usage
The following logic is typically used in custom text log data sources:

InTrust 11.4.2 Customization Kit
How to... 22

1. The audit script host creates an audit script host instance initialized by a script.

2. The audit script host makes an Audit_EnumInstances call from the script, and uses a computer
name as a parameter. The computer can be represented by a NetBIOS name, an IP address, and so
on.
The call returns a two-dimensional array, in which the "parent" array has only one element, and the
nested array has two elements. The first of these two elements is the same computer name that was
passed to Audit_EnumInstances. The second element is the display name of that computer, which
is then passed to Audit_Connect. For Windows systems, this is the NetBIOS name; for UNIX
systems it is the local name of the host. The display name is exposed in the session list of the
InTrust Manager snap-in.

3. The audit script host makes an Audit_BeforeCollection call, which can perform all kinds of preparatory
activity before gathering.

4. The audit script host makes an Audit_Connect call with an instance parameter. The instance parameter
is the value previously returned by Audit_EnumInstances. The log parameter corresponds to the
EventLog field in an InTrust data store.

5. The audit script host makes an Audit_Seek call, which expects a Position object. The script can use the
Position object to gather audit trails in increments. The object stores information required by Audit_Seek
to find the place in the audit trail where gathering stopped the last time. If the precise position is found,
true is returned. Otherwise, the result is false. If false is returned, the details of the corresponding session
state that the position could not be found.

6. The audit script host makes an Audit_CollectEvents call. This is the stage at which gathering takes
place. During the gathering, the script must call the AuditProvider.SubmitEventPositionPair method.
This method returns pairs each composed of an Event object and a corresponding Position object.
For the custom text log data source to work properly, each Position object must contain an element with
the following index in the values array:
{3C2E0E29-790F-47bf-99B2-8F71DD23FA07}
The element with this index must contain the code of the function that compares positions using Audit_
ComparePositions. The audit script position processor uses this code for comparison. The text must be
identical in both positions; otherwise comparison will produce an error.
This is required so that the custom script can implement a comparison function and positions can be
compared without the custom script.
To see an example of how the {3C2E0E29-790F-47bf-99B2-8F71DD23FA07} index is used, open the
properties "Custom Text Log data source template" script and click Edit. Locate the definition of the
PosHelper function and note the way the index is handled.

7. Gathering finishes after Audit_CollectEvents completes.

8. The audit script host makes an Audit_AfterCollection call. If the success parameter is true, it means that
events submitted by the script have been successfully stored. If success is false, this indicates that event
storing has failed. For example, the script can use this parameter to clear a previously gathered log.
However, you may lose some events in this case.

The script can use the following methods to output diagnostic information:

l AuditProvider.Trace to write to the AdcEventDataManager trace

l AuditProvider.LogMessage to write to session details

l AuditProvider.OperationStatus to write to session details

For details about the InTrust object model, see Object Library.

InTrust 11.4.2 Customization Kit
How to... 23

Customizing Data Source Filters
Filters on data sources are defined for gathering, consolidation and import policies; these filters can be
customized using REL.
The filters are available for editing in the properties of a data source. You can open the properties of an existing
data source directly in InTrust Manager. Alternatively, you can configure the filters as you create a new policy.

NOTE: Renaming and editing the filter instance that you have added to a data source does not affect the
predefined list of available filters. Your modified filter is stored with its respective data source.
To modify the parameters and matching conditions, click the Advanced button in the properties of the
filter.

The following is an example of a simple filter:

InTrust 11.4.2 Customization Kit
How to... 24

<filter type="EventFilter" version="1.0">
 <arguments>
 <argument displayname="Computer List" name="Computer List" description=""
class="List">
 <value />
 </argument>
 </arguments>
 <body>
 _DataSourceName="Security" and in(_HostName, "wi", array(<parameter
name="Computer List">))
 </body>
</filter>

In this example, the filter accepts events only from a specific (case-insensitive, wildcard-enabled) list
of computers.
For details about defining parameters, see Customizable Parameters. For a list of predefined event fields that
you can filter by, see Event Fields.

Event Fields
The following table lists predefined fields in event records. When you create an event, do not modify any of the
bolded fields.

FIELD DESCRIPTION

RecordNumber Number of the record in the event log, used for storing the position of the last gathered
event.

TimeGenerated Time when the event was generated.

TimeWritten Time when the event was written to the log.

EventID ID of the event in the InTrust gathering session.

EventType Type of the event.

NumericCategory Integer representation of the event category.

StringCategory String representation of the event category.

Source Name of the event source.

Computer Computer on which the event occurred.

ComputerDomain Domain of the computer on which the event occurred.

UserBinarySid SID of the user who produced the event.

UserName Name of the user who produced the event.

UserDomain Domain of the user who produced the event.

Description Description of the event.

InTrust 11.4.2 Customization Kit
How to... 25

FIELD DESCRIPTION

EventData Binary data of the event.

VersionMajor Major operating system version number of the computer on which the event occurred.
For example, the major version of Windows XP is 5.

VersionMinor Minor operating system version number of the computer on which the event occurred.
For example, the minor version of Windows XP is 1.

PlatformID Platform (operating system) ID of the computer on which the event occurred.

AccountName Name of the user who produced the event, in domain\user format.

TimeLocal Time when the event was written to the log; this time is local to the computer where the
event was logged.

_ID Unique identifier of the event (a string that represents the object's GUID)

_LocalTime Local time of event generation.

_GMT GMT time of event generation.

_Priority Event priority. This field is not used, and is always set to 2, meaning Normal.

_
DataSourceName

Name of the log.

_ProviderName Name of the InTrust data source.

_DataSourceId GUID of the log.

_HostName Name of the host where the event was generated.

Creating Rules
An InTrust real-time monitoring rule is a logical structure that is used to constantly analyze event flow, which is
created by the InTrust agent on the monitored computer. As a result of the analysis, the rule either triggers
further actions or does nothing.
If the rule detects the condition that it is designed for, this means that the rule is matched. In this case, possible
actions are as follows:

l Sending alerts

l Running a program

l Running a script

l Launching an InTrust task

l Setting an audit policy

l Sending an SNMP trap

InTrust 11.4.2 Customization Kit
How to... 26

Every rule is implemented in XML with embedded scripts. The XML code for a rule has three distinct sections:

1. Parameter descriptions
This section describes rule parameters. Rule parameters are displayed in the user interface so that you
can set their values with interactive controls. They are stored as variables for use in the matching script.
The terms "parameter" and "argument" can be used interchangeably.

2. Optional pre-filtering script
This script filters events for matching. It minimizes the number of events the rule has to process by
filtering out anything that the matching process does not have to consider. The script helps reduce
bandwidth and optimize performance.

3. Matching script
This script processes pre-filtered data and either returns event records or does nothing depending on
input. Event records are passed on to the InTrust framework and can be used in real-time monitoring
alerts. Returning event records means that the matching process was successful, and InTrust takes all
actions associated with a matched rule.

For details about the structure of a rule, see Rule Structure.

To create a real-time monitoring rule

1. Expand Real-Time Monitoring | Rules.

2. Right-click the necessary rule group and select New Rule.

3. In the New Rule Wizard that starts, select a data source type.

4. Select one of the predefined rule templates or the Custom Rule option.

5. Complete the wizard.

There are three ways to create a rule with the wizard, as follows:

1. Using a predefined template

2. Using a custom REL-based template

3. Using a custom ECMAScript-based template

Predefined templates cover most real-time monitoring situations. In addition, if a predefined template does
something similar to what you need, but you want the rule's behavior to differ slightly, you can use the
predefined template and edit the resulting rule later.
REL (rule expression language) is a built-in language designed specially for creating rules. For example, rules
created using predefined templates are XML structures with embedded REL code.
REL and ECMAScript are both used for the same purpose, but have very different ideologies. The following
table shows the pros and cons of each rule creation method.

METHOD ADVANTAGES DISADVANTAGES

Predefined
templates

l Easy, quick and intuitive

l Does not require scripting skills

l Provides a limited set of data
filtering options and patterns

InTrust 11.4.2 Customization Kit
How to... 27

METHOD ADVANTAGES DISADVANTAGES

l Suitable for most common monitoring
needs

l Cannot create custom matching
logic

Custom REL-
based templates

l Lets you define custom algorithms for
pre-filtering and matching

l Ideal for moderately complex solutions
where predefined data filtering options
are not applicable

l Has a learning curve

l Defines a rigid logical structure
where conditional behavior is
difficult to implement

Custom
ECMAScript-
based templates

l Powerful and flexible scripting
environment

l Achieves tasks of any complexity

l Best for detecting event patterns

l Can be impractical for
moderately complex solutions

l Can be slower than a an
equivalent REL-based rule

For the matching script, it makes a difference where matching occurs—on the InTrust server side or on
the agent side.
Matching on the server side enables you to use the local resources of the InTrust server, such as libraries
and applications. Matching on the agent side lets you use the resources of the target computer and get
additional information associated with collected data, if necessary. In either case, shared network resources
are available to rules.
The following are examples of where server-side and agent-side rules can be useful:

l Server side: depending on what events come in from a certain computer, you can look for related events
on any other monitored computer to create complex alerts.

l Agent side: you can easily create a rule for members of computer local administrative groups on a
target computer.

Importing and Exporting Rules
You may want to make only minor changes to an existing rule. You may also want to use your own text file-
based rule template instead of the custom rule wizard. In these situations, the import and export features of
InTrust come in handy.
To export a rule to an XML file for further customization, right-click the rule in InTrust Manager and select Export.
To import a customized rule, use the InTrustPDOImport command-line utility, which is located in the <InTrust_
installation_folder>\InTrust\Server\ADC\SupportTools folder on the InTrust Server computer.

See Also
Rule Structure
Examples

InTrust 11.4.2 Customization Kit
How to... 28

Rule Structure
A real-time monitoring rule has the following XML structure:

<?xml version="1.0" encoding="utf-8" ?>
<rule type="REL" version="1.0" language="jscript">
<arguments>
<argument usedefault="true" name="sample_arg" description="" class="Text">
<value>sample_arg_value</value>
<default description="descr">
sample default value
</default>
</argument>
...
</arguments>
<prefilter>
...
</prefilter>
<body>
...
<parameter name="sample_arg"/>
...
</body>
</rule>

The <rule> tag pair encloses the entire rule and has the following attributes:

l type
This attribute should always be "REL".

l version
This attribute specifies the version of the scripting language used in the rule. For both languages, the
current version is 1.0.

l language
This attribute set whether or not the rule is ECMAScript-based or not. For ECMAScript-based rules it
should be "jscript".

The <rule> tag pair encloses the following:

l <arguments> tag pair

l optional <prefilter> tag pair

l <body> tag pair

Specifying Arguments
The <arguments> tag pair contains definitions of rule arguments and sets their default values. Inside the pair,
each argument is represented by an <argument> tag pair with the following attributes:

InTrust 11.4.2 Customization Kit
How to... 29

l name
The name of the argument. Use this name in the rule script to get the argument value.

l description
Description of the argument. This attribute is optional. If specified, the description is displayed in the
user interface.

l class
Class, or data type, of the argument. This is a mandatory attribute. Supported classes are
listed further on.

l usedefault
Binary attribute specifying where the rule gets the argument value. If true, the value specified in the
<default> tag pair is used. Otherwise, the value from the <value> tag pair is used. This attribute is
optional. If you do not supply it, the value from the <value> tag pair is used.

Inside the <argument> tag pair, specify the following tag pairs:

l <value>
The current value of the argument.

l <default>
The value that is used if the argument is left unchanged. The <default> tag has an optional description
attribute. Use this attribute to make the default value descriptive in the user interface.

Compare the following snippet of code and the way the user interface represents it in the rule properties on the
Matching tab:

...
<arguments>
<argument name="Users" class="List" usedefault="true">
<default description="Any user">"*"</default>
<value>"Homer","Marge","Bart","Lisa","Maggie"</value>
</argument>
<argument name="Groups" class="List" usedefault="false">
<default description="Any group">"*"</default>
<value>"*\Administrators","Power Users"</value>
</argument>
<argument name="Time Period" class="DateTimeRange">
<value>"0/00/0 00:05:00"</value>
</argument>
</arguments>
...

Notice that the check box next to the Users parameter is cleared, and the default value is used for the
parameter. The value itself is not shown, but replaced with a description. The Groups parameter also has a
default value, but it is not used in this case.

InTrust 11.4.2 Customization Kit
How to... 30

For details about supported parameter types, see Customizable Parameters.

Pre-Filtering
Use this section for server-side rules, for which this section is executed first on the agent side and then, if
matching occurs, on the server side. If an event is matched during pre-filtering, then matching continues in the
<body> section.
For agent-side rules, this section is ignored.
Enclose the script within the <prefilter> tag pair.

Matching
Specify the matching script within the <body> tag pair. Your script should do the following:

l Use REL or ECMAScript syntax to describe the situation you are watching out for.

l If the situation occurs, pass on the corresponding event.

l If the situation does not occur, do nothing.

Matching in REL
If your rule uses REL, an expression defines whether the rule is matched, and represents the event record at
the same time.

Matching in ECMAScript
If the rule uses ECMAScript, then the script should perform condition testing. In a typical situation, if the result of
the test is true, the script should match the event that is passed to it. If the result is false, the script should
execute a return statement.
The following three functions are essential for ECMAScript-based rule matching:

1. OnEvent()
This function identifies the incoming event so that the rule can work with it. The argument of the function
is the object that represents the incoming event.

2. match()
Call this function when condition testing yields true, and use the same argument as in OnEvent(). This
ensures that you pass on the same event record that you tested for. This is the preferred use ofmatch(),
although you can deviate from this practice and modify event fields if necessary.

3. print()
Use this function to debug your scripts. It outputs the values of its arguments to a trace file (ADCTRACE_
RELMatcher*) if the tracing level is set to at least 30.

The trace file is written only if tracing is enabled. The RELMatcher setting in the adctracer.ini file controls
tracing for this component. For details about tracing configuration, see InTrust Server Tracing.

InTrust 11.4.2 Customization Kit
How to... 31

NOTE: Rules are XML structures, so rule processing involves XML parsing. Script embedding can
introduce two types of errors: XML code errors (preventing you from saving the code) and script code
errors (causing the rule to fail). Mind that the actual script code to be executed is generated as a result of
XML parsing.
When typing or pasting script code inside the <prefilter> or <body> tag pairs, remember that the resulting
code must be valid XML. Use metacharacters instead of characters that might break XML markup. On the
other hand, make sure that the script code comes out as expected after the parsing.
For more information about XML syntax, see http://www.w3.org/TR/REC-xml/#syntax.

Examples
The following are examples of InTrust rule definitions in ECMAScript and REL.

InTrust 11.4.2 Customization Kit
How to... 32

http://www.w3.org/TR/REC-xml#syntax

ECMAScript
<rule type="REL" version="1.0" language="jscript">
 <arguments>
 <argument usedefault="false" name="IncludeFiles" description="Specify files that
will be monitored by this rule. Note: you can use path masks." class="List">
 <value>"*"</value>
 <default description="">
 default
 </default>
 </argument>
 <argument usedefault="false" name="ExcludeFiles" description="Specify files that
will be explicitly excluded from monitoring. Note: you can use path masks."
class="List">
 <value>"/etc/syslog.conf"</value>
 <default description="">
 default
 </default>
 </argument>
 </arguments>
 <prefilter>
 </prefilter>
 <body>
function MatchFile(strFileName, arrFileMasks)
{
print("Matching file name:" + strFileName);
for(i = 0; i < arrFileMasks.length; ++ i)
{
var strMask = arrFileMasks[i];
print("mask=" + strMask);
strMask = strMask.replace(/\\/g, "\\\\");
strMask = strMask.replace(/\./g, "\\.");
strMask = strMask.replace(/\?/g, ".");
strMask = strMask.replace(/*/g, ".*");
print("regexp=" + strMask);
var re = new RegExp(strMask, "g");
if(null != re.exec(strFileName))
{
print("file name matched");
return true;
}
}
print("file name is not matched");
return false;
}
function OnEvent(e)
{
if("TextFileModified" == e.Action)
{
print(e.Action);
var arrTextFiles = new Array(<parameter name="IncludeFiles"/>);
var arrExceptTextFiles = new Array(<parameter name="ExcludeFiles"/>);

InTrust 11.4.2 Customization Kit
How to... 33

if(!MatchFile(e.FileName, arrExceptTextFiles)
&& MatchFile(e.FileName, arrTextFiles))
{
match(e);
}
}
}
 </body>
</rule>

Note the use of XML markup in the definition of the arrTextFiles and arrExceptTextFiles variables. This is not
valid ECMAScript. However after the rule is parsed, the markup is substituted for the values of the relevant rule
parameter, producing valid code.

REL
<?xml version="1.0"?>
<rule type="REL" version="1.0">
 <arguments>
 <argument name="AdmRightsList" class="List" description="A list of
administrative user rights">
 <value>"SeLoadDriverPrivilege", "SeBackupPrivilege", "SeDebugPrivilege",
"SeRemoteShutdownPrivilege", "SeIncreaseQuotaPrivilege", "SeManageVolumePrivilege",
"SeAuditPrivilege", "SeSecurityPrivilege", "SeTakeOwnershipPrivilege",
"SeTcbPrivilege", "SeSystemtimePrivilege"</value>
 </argument>
 <argument name="Group List" class="List" description="A list of groups for
managing user rights in an organization">
 <value>"Administrators", "Account Operators", "Domain Admins", "Group Policy
Creator Owner", "Enterprise Admins"</value>
 </argument>
 </arguments>
 <prefilter>
(EventID = 608 or EventID = 609)
and striequ(Source, "security");
 </prefilter>
 <body>
(EventID = 608 or EventID = 609)
and striequ(Source, "security")
and in(String1, "wi", array(<parameter name="AdmRightsList"/>))
and not member_of(strcat(String4, "\\", String3), array(<parameter name="Group
List"/>), true);
 </body>
</rule>

Scripting Response Actions
Response actions are defined for real-time monitoring rules. These actions are performed when rules are
matched. InTrust provides the following response action types:

InTrust 11.4.2 Customization Kit
How to... 34

l Execute script

l Execute command

l Run InTrust task

l Send SNMP trap

l Set audit policy

The "Execute script" response action type lets you define and perform your own actions that are not
implemented by other response action types.
The script you use can do whatever you need, and it can be in whichever valid language you choose. The
scope of the script's actions is defined by the object model available to it.

To configure a custom scripted response action

1. Create a new script object in the Configuration | Advanced | Scripts node of the InTrust
Manager snap-in.

2. Supply a script that this object must contain.

3. Define and set parameters for the script.

4. Add an "Execute script" response action to the necessary rule, and add the new script object to it.

5. In the response action properties, establish a correspondence between the values that the rule returns
and the parameters of the script.

The configuration objects in this brief scenario are explained in the following two subsections.
For details about InTrust script objects, see InTrust Script Objects.

"Execute Script" Response Action
Before using your custom script as a response action, you must ensure that the rule passes the correct data to it.
The parameter list in the properties of the response action determines what values the rule makes available for
use in response action scripts.
To specify parameters that the rule must expose

1. Make sure that the necessary script object exists, and its parameters are configured correctly.

2. Open the properties of the rule you need.

3. On the Response Actions tab of the properties dialog box, click Add, and add the script object.
When you complete the wizard that starts, the response action properties dialog box opens on the
Settings tab.

4. On the Settings tab, use the Edit button to specify what values (fixed or dynamic) the rule passes
to the script.

InTrust 11.4.2 Customization Kit
How to... 35

Parameters for the list are read from the script object that you selected. At this stage, you assign values to
existing script parameters.

Enumerating Sites
You can customize the object enumeration logic for InTrust sites by providing custom enumeration scripts as site
objects. To customize site enumeration, create a script object in the Quest InTrust Manager | Configuration |
Advanced | Scripts container implementing the desired logic, and specify that script for your site.
For details about using script objects, see InTrust Script Objects.
Only ECMAScript is supported for site enumeration scripts. The script needs to implement the Enumerate
(typeItemType) function. Currently, the value of typeItemType can be only 2 (computer).
The function should do the following:

InTrust 11.4.2 Customization Kit
How to... 36

1. Use the CreateSiteItem(2) function to create a computer object.

2. When the computer object has been created and returned by CreateSiteItem(), set its properties.
In a computer object, only the OriginalName property needs to be set explicitly. The remaining
properties are set automatically.

3. Add the object to the site using the AddSiteItem(objectSiteItem) function.
This function accepts a single parameter: the site item object created on the previous step.

4. To report any possible script runtime errors, use the ReportError(internalCode, internalMessage,
systemCode, systemMessage) function.

The resulting message is constructed consists of:

l internalMessage if internalCode equals E_FAIL

l internalMessage + systemMessage in all other cases

The systemCode parameter is reserved.
The message should be visible in the enumeration pane and in session logs if the site enumeration is initiated
by InTrust jobs.
Additional features of site enumeration scripts:

l Parameters are supported, as in real-time monitoring response action scripts. The parameter syntax is
the same. For details, see the "Execute Script" Response Action section.

l Traces can be output. These traces are written by the MSNNSiteProvider component. However, its
traces are related not only to site enumeration scripts, so it is a good idea to identify scripted
enumeration traces, for example, by using a meaningful prefix in their messages. For details about
tracing, see InTrust Server Tracing.

l #INCLUDE statements are supported.

The following adds the local host to the site:

function AddComputerToSite(strComputerName, SiteObjectType)
{
 #TRACE TraceDebug "enter ->AddComputerToSite"
 var NewSiteItem = CreateSiteItem(SiteObjectType);
 NewSiteItem.OriginalName = strComputerName;
 AddSiteItem(NewSiteItem);
 #TRACE TraceDebug "exit ->AddComputerToSite"
}
function Enumerate(SiteItemType)
{
 AddComputerToSite("127.0.0.1", 2);
}

In this sample, modify the Enumerate() function to do useful work (for example, cycle through computers in an
Active Directory domain to find and add those with specific properties).

InTrust 11.4.2 Customization Kit
How to... 37

Language Reference
ECMAScript
JScript
REL
PowerShell Script

ECMAScript
ECMAScript is a cross-platform scripting environment that InTrust can use for the following:

l Scripted data sources

l ECMAScript-based rules

l Scripts run by real-time monitoring rules as response actions

When using ECMAScript with InTrust-specific extensions, mind that it does not fully support ActiveX objects.
The ECMA-262 standard defines the ECMAScript scripting language.

JScript
JScript is the implementation of JavaScript by Microsoft, available only on Windows systems.
InTrust can use JScript for the following:

l Scripts run by real-time monitoring rules as response actions

l Pre-filtering and matching scripts in rules

REL
REL (Rule Expression Language) is used for defining rules that generate alerts. REL
is also used for filtering events.
The result of expression evaluation is usually a Boolean value, or is converted to
such a value. This value determines whether a specific alert is generated or message
is filtered. The parameters of a REL expression are InTrust events.

Reference
Words
Expressions
Operators

InTrust 11.4.2 Customization Kit
Language Reference 38

Functions

Words
Expressions are evaluated left to right. Words are separated by white spaces, tabs and carriage returns. There
are six types of words in REL:

l ID
Name of an argument, field or function. An ID can include alphanumeric characters and the underscore
character (_), but cannot begin with a number. IDs are case-sensitive.

l String constant
Enclosed in single or double quotes. Use the backslash escape character (\) to specify quotes (as in
"quoted text: \"some text\"") or the backslash character itself (as in "domain\\user"). String constants, like
expressions, use the encoding of the current locale (depending on implementation). String values of
fields are converted to the local encoding when they are processed.

l Numeric constant
Begins with a number or a negative sign (-). If a numeric constant begins with "0x", it is interpreted as a
hexadecimal value with characters representing the number bitwise (including the sign bit). All numeric
constants are signed 32-bit integers.

l Boolean constant
True or false.

l Operator
The following operators are used:

o + - * / % > >= < <=

o = != () | & << >> ? :

o . [] or and not

l Auxiliary character

Characters that are part of expression language syntax, such as parentheses, curly braces, and the function
definition character.

Formal Language Grammar
expression ::= +(token)

token ::= [*space] (identifier | string | number | boolean | operator |
special) [*space]

space ::= " " | "\t" | "\n"

identifier ::= (alpha | "_") *(alpha | numeric | "_")

string ::= single_quoted | double_quoted

single_quoted ::= "’" *(char | ’r;"’ | "\’" | "\\") "’"

double_quoted ::= ’r;"’ *(char | "’" | ’r;\"’ | "\\") ’r;"’

InTrust 11.4.2 Customization Kit
Language Reference 39

char ::= 0x00 | …… | 0xFF ; all characters except ’r; " \

number ::= (["-"] +numeric) | ("0x" +hex)

boolean ::= "true" | "false"

operator ::= plus | minus | multiply | divide | modulus | greater | greater_equal
| less | less_equal | equal | inequal | bit_or | bit_and | bit_xor | shift_left
| shift_right | not | or | and | conditional | selection | field_selection |
open_sq | close_sq

plus ::= "+"

minus ::= "-"

multiply ::= "*"

divide ::= "/"

modulus ::= "%"

greater ::= ">"

greater_equal ::= ">="

less ::= "<"

less_equal ::= "<="

equal ::= "="

inequal ::= "!="

bit_or ::= "|"

bit_and ::= "&"

bit_xor ::= "^"

shift_left ::= "<<"

shift_right ::= ">>"

not ::= "not"

or ::= "or"

and ::= "and"

conditional ::= "?"

selection ::= ":"

field_selection ::= "."

open_sq ::= "["

close_sq ::= "]"

symbol ::= open_br | close_br | comma | definition | open_cr | close_cr

InTrust 11.4.2 Customization Kit
Language Reference 40

open_br ::= "("

close_br ::= ")"

comma ::= ","

definition ::= ":="

open_cr ::= "{"

close_cr ::= "}"

Formal Language Syntax

REL_expression ::= *(function_definition) expression

function_definition ::= "def" identifier open_br [argument_def_list] close_br
definition open_cr expression close_cr

argument_def_list ::= argument_def *(comma argument_def)

argument_def ::= identifier [equal expression]

primary_expression ::= constant | identifier | function |

(open_br expression close_br)

constant ::= string | number | boolean

function ::= identifier open_br [argument_list] close_br

argument_list ::= expression *(comma expression)

operator_indexing ::= primary_expression |

operator_indexing field_selection identifier |

operator_indexing open_sq expression close_sq

operator_unary ::= primary_expression |

(minus | not) primary_expression

operator_multiply ::= operator_unary |

operator_multiply (multiply | divide | modulus) operator_unary_minus

operator_add ::= operator_multiply |

operator_add (plus | minus) operator_multiply

operator_shift ::= operator_add |

operator_shift (shift_left | shift_right) operator_add

operator_bit_and ::= operator_shift |

operator_bit_and bit_and operator_shift

operator_bit_xor ::= operator_bit_and |

operator_bit_xor bit_xor operator_bit_and

InTrust 11.4.2 Customization Kit
Language Reference 41

operator_bit_or ::= operator_bit_xor |

operator_bit_or bit_or operator_bit_xor

operator_compare ::= operator_bit_or |

operator_compare (greater | greater_equal | less | less_equal) operator_bit_or

operator_equal ::= operator_compare |

operator_equal (equal | inequal) operator_compare

operator_and ::= operator_equal | operator_and and operator_equal

operator_or ::= operator_and | operator_or or operator_and

operator_conditional ::= operator_or |

operator_or conditional expression selection expression

expression ::= operator_conditional

In REL-based event filters, there must be no semicolon at the end of the expression. In rules, the semicolon
is required.

Expressions
An expression is a basic language entity. An expression has a value and a type. It consists of constants, events
and event fields, and also operators and function calls required for calculations.
Expression examples:

5
A+B
Source
Count<5
strstr(Description, "found")

Expression Types
Simple types

l string

l number

l boolean

l empty

Complex types
l message (event)

l array

InTrust 11.4.2 Customization Kit
Language Reference 42

Arrays
Use brackets to specify the array element you want to access. The first element of an array has an index of 0.
Arrays can include other arrays. For example, it is possible to return an array of field arrays to denote a set of
fields each of which has a set of auxiliary fields.
If you go outside the scope of an array, the returned value is empty (an empty field or a message without fields).
Arrays can also be empty; in this case, getting any element of the array returns an empty value.

Type Conversion
REL does not have strong typing. All expression values are converted to other types as necessary, according to
the rules described further on.

l Strings to numbers
Characters are interpreted as a number. If the expression begins with "0x", the remaining characters are
interpreted as a hexadecimal representation of a number. If the string does not represent a number, zero
is returned.

l Numbers to strings
A number is converted to its decimal representation without leading spaces or zeros.

l Booleans to strings and numbers
Boolean values are converted to the strings "true" and "false", and to the numbers 1 and 0, respectively.

l Numbers to Booleans
False if the number is 0, and true otherwise.

l Strings to Booleans
False if the string is empty.

Converting Arrays
Wherever an array is required, a simple value can substitute it, and the reverse is also true. Conversions are
made according to the following rules:

l Simple value to array
A message is converted to a message array with a single element. A field is converted to a field array
with a single element.

l Array to simple value
The first element of the array is returned. In multi-dimensional arrays, this rule is applied recursively
multiple times and returns the element which is the first at all nesting levels.

Empties
Empty is a special type used to represent undefined values.
Conversion of empties

l Empty to number
0 is returned.

l Empty to string
Empty string (same as "").

InTrust 11.4.2 Customization Kit
Language Reference 43

l Empty to Boolean
False.

l Empty to array
Array with one element (empty).

Events and Fields
An event is an implicit parameter in a REL expression. Event fields are accessed by name. Example:

EventID = 100

If an event or event array is returned by a function, you can access its fields using the "." operator. Example:

previous_lim(Z.EventID=100, "1:00:00").String1
select(Z.EventID=100, "1:00:00")[0].String1

If the specified field is not found, a value of the "empty" type is returned.
The "." operator can be applied to an event array. In this case, the result is an array of values of the specified
field. The size of this array is equal to the size of the event array. Example:

select(Z.EventID=100, "1:00:00")._LocalTime

An event cannot be converted to a simple (scalar) type or an array. This operation returns an empty.
The asterisk character (*) is a special case of field name. This field contains an array of the string values of all
message fields.

Functions
A function call is a function ID followed by a list of arguments in parentheses, which can be empty. The value of
such an expression is the value returned by the function. Functions can be built-in or custom.
The built-in function library includes string operations, math operations, access to the event store and so on. A
detailed list of built-in functions is given further on.

Custom Functions
The syntax for defining custom functions is as follows:

def name([argument_list]) := { expression }

The general ID naming rules apply to names of internal functions. The list of internal function arguments (if any)
is a comma-separated list of parameter names with optional default values. The arguments of internal functions
can be constants, fields and field arrays, and messages. The default value is separated from the argument
name by the equals character (=) and is assigned to the argument automatically if the argument is omitted in a
function call. You can omit any number of arguments starting from the right, as long as the arguments have
default values. The expression in curly braces is the result of the function call.
Example:

def DoDivide(a, b=10) :=
{
a/b
}
def IsLogon() :=

InTrust 11.4.2 Customization Kit
Language Reference 44

{
in_range(EventID, "529-537, 539, 548-549")
and striequ(Source, "security")
}

Custom and built-in functions share the same namespace. Redefining a function results in an error.
When functions are called, whether built-in or custom, the types of the arguments are not checked. When types
mismatch, standard type conversion is performed.

Built-In Function Library
REL’s built-in function library includes the following function types:

l General Functions

l Math Functions

l String Processing Functions

l Date and Time Processing Functions

l Message Selection and Filtering Functions

l Function for Defining Missing Messages

l Windows-Specific Functions

Function syntax can be described by the following template:

type_of_returned_value function_ID (argument1_type argument1, argument2_type
argument2, ...)

where types are specified as string, number, Boolean or message. Brackets ([]) after the argument type specify
that the function treats the argument as an array and processes all of its elements. If you specify any-type as the
argument type, the function can take arguments of any type.
If the function takes an indefinite number of arguments, this is specified as follows: "type name1, type name2,
...", where type can be any word that describes the meaning of the arguments.
Built-in functions do not check argument types; they simply treat arguments as expressions of the specified type.

General Functions

FUNCTION PROTOTYPE DESCRIPTION

number count
(

any-type[] expr1
)

Returns the number of array elements. For simple types, the returned value is
always 1.

boolean empty
(

any-type[] expr1
)

Returns true if array expr1 is empty. For simple types, false is always returned.
Defined as count(expr1)=0.

InTrust 11.4.2 Customization Kit
Language Reference 45

FUNCTION PROTOTYPE DESCRIPTION

boolean exist
(

any-type[] expr1
)

Returns true if array expr1 has elements. For simple types, true is returned.
Defined as not empty(expr1).

number number
(

any-type expr1
)

Converts the expression to the number type. Type conversion functions perform
standard conversion and are mainly used for explicitly setting argument types in
such functions as equal(), differ() ormax().

string string
(

any-type expr1
)

Converts the expression to the string type.

boolean boolean
(

any-type expr1
)

Converts the expression to the Boolean type.

boolean equal
(

any-type[] expr1
)

Returns true if all array elements are equal.

boolean differ
(

any-type[] expr1
)

Returns true if all array elements differ. That is, there are no equal value pairs.
Note that the negative result of an equal() is required but not sufficient for the
positive result of a differ() with the same arguments.

min
(

number[] expr1
)

Returns the least of the array items.

max
(

number[] expr1
)

Likewise, returns the greatest of the array items.

boolean in_range
(

any-type exp,
string range

)

Checks whether exp is within range; range is a string of values which are either
comma-separated or specified as ranges. The values can be only positive
integers. Example:

in_range (EventID, "451, 512-654").

InTrust 11.4.2 Customization Kit
Language Reference 46

FUNCTION PROTOTYPE DESCRIPTION

boolean in
(

string exp,
string options,
string[] values

)

Tests whether exp is listed in values, which includes strings (literals or regular
expressions).
The options string specifies how string matching is performed:

l [b|e|c]
b—basic regex
e—extended regex
c—simple comparison (strcmp); this is the default

l [i|s]
i—case-insensitive
s—case-sensitive (default)

l [w]
use wildcards

l [r]
If this flag is included, a search operation is performed on exp instead of a
match operation (which is the default behavior). Searching differs from
matching in that matching returns true only if the pattern is at the
beginning of exp, and searching returns true if the pattern is anywhere in
exp.

Example:

in(strcat(String4, "\\", String3), "wi", array
("DOMAIN1\\guest", "DOMAIN2*"))

Math Functions

FUNCTION PROTOTYPE DESCRIPTION

number abs
(

number expr
)

Returns the absolute value of the argument.

number sqr
(

number expr
)

Returns the square root of the numeric value of expr.

number sqrt
(

number expr
)

Returns the square root of the numeric value of expr. If the value of expr is
negative, –1 is returned.

number sum
(

Returns the sum of all arguments. If the argument is an array, its value is the sum
of all its elements.

InTrust 11.4.2 Customization Kit
Language Reference 47

FUNCTION PROTOTYPE DESCRIPTION

number[] expr1
)

number product
(

number[] expr1
)

Returns the product of all arguments.

number difference
(

number[] expr1
)

Returns the numeric difference between the greatest and least elements in the
argument sequence. Defined as (max(expr1)-min(expr1)).

number average
(

number[] expr1
)

Returns the arithmetical mean of arguments. This is the equivalent of sum(expr1)
divided by the number of arguments, including array elements.

number deviation
(

number pos,
number[] expr1

)

Returns the statistic deviation of the pos-th selection element (element indexing
starts with 0). Defined as expr_at_pos – average(expr1)).

number mean_deviation
(

number[] expr1
)

Returns the mean statistic deviation of the selection. Defined as average(abs
(deviation(1, expr1)), abs(deviation(2, expr1)), ...).

number dispersion
(

number[] expr1
)

Returns the statistic dispersion of the selection. Defined as average(sqr(expr1[0]
– average(expr1), sqr(expr1[1] – average(expr1), ...).

number std_deviation
(

number[] expr1
)

Returns the mean square deviation of the selection. Defined as sqrt(dispersion
(expr1)).

String Processing Functions

FUNCTION PROTOTYPE DESCRIPTION

number strlen
(

Returns the number of characters in the string expr1.

InTrust 11.4.2 Customization Kit
Language Reference 48

FUNCTION PROTOTYPE DESCRIPTION

string expr1
)

string strcat
(

string expr1,
string expr2,

...
)

Returns the string value which is a concatenation of all specified strings.

string substr
(

string expr1,
number pos,

number length
)

Returns a substring of the string expr1, beginning with the pos-th position and
having a length of length. Characters are numbered starting with 0. If length is –1,
everything from pos to the end of the string is returned.

number strstr
(

string expr1,
string expr2

)

Returns the position of the first encounter of expr2 in expr1. If expr1 does not
contain expr2, –1 is returned.

string strupr
(

string expr1
)

Returns the string expr1 where all characters are converted to upper case
according to the rules of the local encoding.

string strlwr(
string expr1

)

Returns the string expr1 where all characters are converted to lower case
according to the rules of the local encoding.

number stricmp
(

string expr1,
string expr2

)

Compares two strings while ignoring case. Returns the following numeric values:
<0 if expr1 < expr2
0 if expr1 = expr2
>0 if expr1 > expr2

boolean striequ
(

string expr1,
string expr2

)

Returns true if two strings are identical. Ignores case. Equivalent to stricmp
(expr1, expr2) = 0.

number[][] regexp
(

string exp,

Runs regular expression exp on string str. Supported regular expressions are
defined by IEEE Std 1003.1-2001 (so-called POSIX regular expressions). Both
basic and extended regular expressions are supported. The text value of options

InTrust 11.4.2 Customization Kit
Language Reference 49

FUNCTION PROTOTYPE DESCRIPTION

string str,
string options

)

can contain the following characters:
• e—specifies that exp is an extended regular expression (ERE)
• b—specifies that exp is a basic regular expression (BRE)
• n—boost::regbase::normal (JavaScript) – default
• i—ignore case
The function returns a two-dimensional Nx2-sized array containing all substrings
matching the regular expression, where N is the total number of matches. The first
element of each nested array contains the index of the string start (indexing starts
with 0); the second element contains the string length.

Date and Time Processing Functions
The event creation date and time (Time field) are represented by a string according to the description of the
field. Date and time processing functions convert this string to numbers and back, and do math operations
on the date and time. If it is specified that the function returns time, it actually returns a string formatted for
the Time field.

FUNCTION PROTOTYPE DESCRIPTION

number year
(

string expr
)

Returns the numeric year value.

number month
(

string expr
)

Returns the numeric month value.

number day
(

string expr
)

Returns the numeric day value.

number hour
(

string expr
)

Returns the numeric hour value.

number minute(
string expr

)

Returns the numeric minute value.

number second
(

Returns the numeric second value.

InTrust 11.4.2 Customization Kit
Language Reference 50

FUNCTION PROTOTYPE DESCRIPTION

string expr
)

number ms
(

string expr
)

Returns the numeric millisecond value.

number dow
(

string expr
)

Returns the numeric day-of-the-week value (0 is Sunday, 1 is Monday, and so
on).

string local_time() Returns the current system time in local time format.

string time_to_local
(

string expr
)

Converts GMT time to local time format of the current system.

string time_to_gmt
(

string expr
)

Does a conversion that is the reverse of time_to_local().

string time
(

number month,
number day,
number year,
number hour,

number minute,
number second,

number ms
)

Returns a string representation based on numeric month, day, year, hour, minute,
second and millisecond values of event creation time. You can omit any number
of fields. In this case, general rules apply, and the values of omitted fields are
assumed to be 0.

string time_diff
(

string expr1,
string expr2

)

Returns the string representation of the date and time based on the date
difference between expr1 (later event) and expr2 (earlier event). Afterwards, you
can use the functions year(),month() and day() to find out how many units of time
elapsed between the events.
Example:

time_diff("4/28/2002", "3/25/2001")="1/3/1"

(one year, one month, and three days)

number [xxx]s_diff
(

This family of functions returns the difference between two events (expr1 is the
later event) in the number of years, months, hours, minutes, seconds and

InTrust 11.4.2 Customization Kit
Language Reference 51

FUNCTION PROTOTYPE DESCRIPTION

string expr1,
string expr2

)

milliseconds. Afterwards, you can use the resulting values to construct non-
normalized time (see time_add()).

string time_add
(

string expr1,
string expr2

)

Adds the time expr2 to the time expr1; expr2 can be non-normalized. Non-
normalized time means such time representation in which the values of particular
fields exceed threshold values (for example, 44 hours and 120 minutes).
Normalization means conversion to conventional representation (for the previous
example, 1 day and 22 hours). Normalization in general is impossible without a
point of reference, because it is not known how many days there are in a month or
whether a year is a leap year. Therefore, it applies only to the time_add()
function.
Examples of date and time processing functions:

strcat(day(_LocalTime), ".", month(_LocalTime))

Represents the time of event in "day.month" format.

minutes_diff(_LocalTime, _GMT)

Time zone in minutes.

time_to_local(time_add(_GMT, time(0, 0, 0, 1, 30)))

time_to_local(time_add(_GMT, time("1:30")))

time_to_local(time_add(_GMT, time("0:90")))

Represents one and a half hours since the event was generated in the server’s
local time format.

Message Selection and Filtering Functions
These functions provide access to a store of received real-time monitoring messages and perform array filtering.
The two function categories interoperate closely, because conditions for selection and filtering are somewhat
different, and these functions complement each other.
Message selection functions do not consider the message that is currently being processed.
Mind that these functions evaluate each tested expression within its own scope rather than in the scope of the
current expression. Such expressions are evaluated for each message that comes in from the data source, and
must return true if the message meets selection conditions. The tested condition is the Z parameter of the
expression, and its fields are accessed using the "Z." prefix.
Expressions used in selection functions do not have access to the parameters of the root expression. In these
expressions, you cannot use message selection and filtering functions. In other words, such expressions can
only set conditions, which are independent of the scope of the expression currently being processed.
The reason for such limitations is selection optimization. Events that pass the filter are stored in a buffer and
returned when functions are called.
No such limitations exist for expressions that are parameters of the filtering function. Access to the processed
message is performed the standard way, while the filtering element is stored in the Z parameter. Thus, complex
selection rules are implemented in two stages:

InTrust 11.4.2 Customization Kit
Language Reference 52

1. Messages are selected by independent parameters.

2. Filtering rules of any complexity are applied.

FUNCTION PROTOTYPE DESCRIPTION

message[] select
(

expr1,
string time

)

Selects all messages that meet condition expr1 and are within a time interval no
less than time relative to the current message. The time string is formatted for the
Time field (see Date and Time Processing Functions). If no matching message is
found, an empty array is returned.
The condition expr1 is evaluated before the main expression. Thus, if the current
event meets this condition, it will be present in the array of events returned by the
select() function.
The events in the array are sorted in ascending order by arrival time, so select()
[0] is the first (oldest) event.
When the rule is matched, the select() function's event buffer is freed. If the buffer
was not empty when the match occurred, then the filter will be applied to
subsequent events and stored in the buffer starting with the time expressed as
OldestEvent._LocalTime + period, where period is the time interval set in select
().
This prevents the rule from being matched too frequently in case there is an
intense flow of events that meet the conditions of the select() function.

message[] previous
(

expr
)

Returns the previous message that meets the specified condition. The function’s
parameters are identical to the parameters of select(). The difference is that this
function does not consider event generation time. The limitations for expr1 are
the same as in select(). If no matching message is found, an empty array is
returned.
The condition expr1 is evaluated after the main expression. This means that the
current event can never be the result of this function. If the rule is matched, the
event stays in the buffer.

message[] previous_lim
(

expr1,
string time

)

This version of the previous() function returns the message that meets the
specified condition and occurred after the specified time (time).
Condition evaluation occurs in the same way as for previous().

message[] consolidate
(

expr1,
string id1,
string id2,

...
)

Consolidates message array expr1 based on the fields id1, id2, ... This means
that any two or more messages with identical values for the specified fields are
merged together. For the other fields, values are taken from the latest message.

any-type[] filter
(

any-type[] expr1,
expr2

)

Evaluates expr2 for each element of the one-dimensional expr1 array in a row.
Returns an array of elements for which the condition is met. The Z parameter is
used to refer to an array element.

InTrust 11.4.2 Customization Kit
Language Reference 53

FUNCTION PROTOTYPE DESCRIPTION

message[] select_filtered
(

expr1,
expr2,

string period
)

This function is almost identical in effect to the following construction: filter(select
(expr1, string period), expr2).
The main difference is that when the rule is matched, only those events are
extracted that pass both the expr1 and the expr2 filter.
expr1 is a filter with a condition that does not depend on the current event
(generalized filter), and expr2 filters the current event (context filter).
expr2 uses temporary variable Z, which iterates through each array element (as
in the filter() function)
Example:

count(select_filtered(EventID=100, Z.User = User, 10:00)) >= 10

This stores all events where EventID is 100. As soon as there are 10 events about
a particular user, the rule is matched, and only events about this user are
removed from the buffer. In contrast, using select() has the disadvantage of
removing all events.

message[] select_
matches
(

expr1,
string period

)

When the rule is matched, the event array is placed in a buffer with expiration time
set to period.
This function is mainly intended to prevent multiple rule matches.
Example:

count(select_filtered(EventID=100, Z.User = User, 10:00)) >=
10;

With this expression, if there are 100 events about the same user, the rule is
matched 10 times. To limit the number of matches, rewrite it as follows:

count(select_filtered(EventID=100, Z.User = User, 10:00)) >= 10
and empty(select_matches(Z[0].User = User, 10:00));

This ensures the rule is matched no more frequently than once in 10 minutes.
Examples of message database and filtering function usage:

count(filter(select(Z.EventID = 100, "1:00:00"), Z.User =
User)) > 5;

The condition is met if there have been more than five events during the past hour
where the EventID is 100 and the User field has the same value as in the current
event.

EventID=100 and not exist(previous_lim
(Z.EventID=200,"00:10:00"));

The condition is met if an event with EventID=100 has come in and there have
been no events with EventID=200 in the past 10 minutes.

Function for Defining Missing Messages
This function defines real-time messages that were not received when expected. The function can consider
absolute time and relative time intervals.

InTrust 11.4.2 Customization Kit
Language Reference 54

FUNCTION PROTOTYPE DESCRIPTION

boolean missing
(

expr condition,
string start_time,
string duration

)

This function returns true if the event that matches expr did not occur during one
of the specified time intervals. Arguments:

1. condition—testing condition

2. start_time—specified in cron format as whitespace-delimited groups of
five comma-delimited fields; the fields are as follows and can contain the
asterisk (*) wildcard:

l minute (0-59),

l hour (0-23),

l day of the month (1-31),

l month of the year (1-12),

l day of the week (0-6 with 0=Sunday).

3. duration—duration of the time interval; the format is the same as for select
() and previous_lim()

Example 1:

missing(Z.Source="Backup", "0 23 * * 3,6", "1:00");

Specifies that an event from the backup system is expected every Wednesday
and Saturday from 11:00 PM until midnight.
Example 2:

missing(true, "0 * * * *", "0:30") or missing(true, "30 * * *
*", "0:30");

Specifies that at least one event of any kind is expected in the log once every half-
hour.

Windows-Specific Functions

FUNCTION PROTOTYPE DESCRIPTION

boolean direct_member_
of
(

string user,
string groups [],

[boolean any_group],
[boolean default]

)

This function returns true if the user user is a direct member of one of the groups
listed in the groups array. The any_group parameter specifies whether
membership in one of the groups (true) or all of the groups (false) is verified. The
user and groups strings can be names or SIDs (which start with "S-1.") The
default parameter is the value that the function returns if membership verification
fails (for example, if access is denied.)
Important: It is assumed that the listed groups are global or universal Active
Directory security groups. Domain local groups with matching names are ignored,
because their memberships and privileges can vary from domain to domain
across the forest.

InTrust 11.4.2 Customization Kit
Language Reference 55

FUNCTION PROTOTYPE DESCRIPTION

Either or both of the last two parameters can be omitted. The following default
values are assumed:
any_group = false,
default = false

boolean is_current_user
(

string domain,
string username

)

Returns true if domain and username are the same as the account that is calling
the function. If domain is an empty string, then username can be the SID of the
account you want to check.

boolean is_current_logon_session(string session)

Returns true if the specified string matches the current logon session. The string
must have the following format: (<hex_num>, <hex_num>)
Example:

(0x0,0x3E7) (as in EventLog)

boolean in_OU
(

string domain,
string name,

string[] orgUnits,
[boolean anyGroup],

[boolean defaultValue]
)

Tests whether the specified account (domain, name) belongs to the specified
Active Directory organizational units (specified as plain OU names, such as
"Accounting" and "Human Resources"). If domain is specified, then name is the
account name. Otherwise, name can be the principal name or SID.
The anyGroup and defaultValue parameters are used as in the direct_member_
of() function.
By default, anyGroup = true, defaultValue = false

boolean member_of
(

string user, string[]
groups,

[boolean any_group],
[boolean default]

)

This function returns true if user is a direct or indirect member of the specified
groups. The any_group and default parameters are used as in the direct_
member_of() function.
Important: It is assumed that the listed groups are global or universal Active
Directory security groups. Domain local groups with matching names are ignored,
because their memberships and privileges can vary from domain to domain
across the forest.
By default, anyGroup = false, defaultValue = false.

number get_account_
type
(

string computer,
string account

)

Queries the type of the specified account (account) on the specified computer
(computer). If the value of computer is an empty string, the local computer is
assumed. The account type is determined through NetUserGetInfo.

l UF_TEMP_DUPLICATE_ACCOUNT 0x0100

l UF_NORMAL_ACCOUNT 0x0200

l UF_INTERDOMAIN_TRUST_ACCOUNTv 0x0800

l UF_WORKSTATION_TRUST_ACCOUNT 0x1000

l UF_SERVER_TRUST_ACCOUNT 0x2000

Additional flags:

l UF_SCRIPT 0x0001

InTrust 11.4.2 Customization Kit
Language Reference 56

FUNCTION PROTOTYPE DESCRIPTION

l UF_ACCOUNTDISABLE 0x0002

l UF_HOMEDIR_REQUIRED 0x0008

l UF_LOCKOUT 0x0010

l UF_PASSWD_NOTREQD 0x0020

l UF_PASSWD_CANT_CHANGE 0x0040

l UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED 0x0080

If the type query fails, 0 is returned.

boolean is_primary_
group
(

string user,
string[] groups

)

Tests whether one of the specified groups is the primary group of the specified
user (user).
Examples:

(EventID = 632 or EventID = 636)
and striequ(Source, "security")
and not is_current_user(String7, String6)
and in(strcat(String4, "\\", String3), "wi", array
("*\\Guests", "*\\Domain Guests"));

The expression tests whether the account used for adding a user to the "guests"
group is different from the InTrust Server account.

(get_account_type(Computer, Account) &
(UF_WORKSTATION_TRUST_ACCOUNT | UF_WORKSTATION_TRUST_ACCOUNT))
= 0

Tests whether the account is a user not a computer.

PowerShell Script
PowerShell Script is a Windows-specific scripting environment that InTrust can use for real-time monitoring rule
response actions.
InTrust does not provide any additional PowerShell cmdlets.

InTrust 11.4.2 Customization Kit
Language Reference 57

Object Library
InTrust functionality extensions rely on the following:

l Conventional scripting host object models
For example, on Windows, all Windows Script Host objects are available to ECMAScript-based rules.

l Additional InTrust-specific objects and functions for auditing and real-time monitoring

Reference
For details, see the following topics:

l Standard Objects

l Emulated Standard Objects

l InTrust-Specific Objects

Standard Objects
On Windows computers, Windows Script Host objects are available to InTrust (where applicable). For more
information, refer to MSDN resources.
On other platforms, it is recommended that InTrust have access to the ECMAScript object model. The following
ECMAScript objects are especially useful for InTrust operations:

l FileSystemObject

l ShellObject

l SystemInformationObject

l RegKey

l ActiveXObject

l Enumerator

l VBArray

For details about these objects, refer to MSDN or the ECMA-262 specification, depending on the object model
you are using.

Emulated Standard Objects
For custom scripted data sources and custom text log data sources, InTrust provides a number of special
objects. These objects are look-alikes of standard WSH objects and can be accessed by the scripts that the data
sources are based on.
Note that these objects can be used only for InTrust gathering and real-time monitoring purposes. They do not
exist outside the scope of InTrust operations.

InTrust 11.4.2 Customization Kit
Object Library 58

l FileSystemObject

l Folder

l File

l TextStream

l ShellObject

l ScriptExecObject

l RegKey

l SystemInformationObject

l TimeOfDayInfoObject

l ActiveXObject

Example
The following script displays a list of files and subfolders in the C:\Temp folder. Then it opens a text file and
types it line by line.
Note that print() is a sfunction from the rule object model. It is not available outside the scope of rules.

try
{
 var FS = new FileSystemObject();
 var folders = FS.GetFolder("c:\\temp\\").SubFolders;
 print("> dir c:\\temp\n");
 for (var i=0; i<folders.length; ++i){
 print("["+folders[i].Name+"]\n");
 }
 var files = FS.GetFolder("c:\\temp").Files;
 for (var i=0; i<files.length; ++i){
 print(files[i].Name+"\n");
 }
 print("---------\n");
 var f = FS.OpenTextFile("example.txt",
 FileSystemObject.AccessMode.ForReading,
 FileSystemObject.CreationDisposition.OpenExisting, "Auto");
 var i = 1;
 while (! f.AtEndOfStream) {
 s = f.ReadLine();
 print(i + "] " + s + "\n");
 ++i;
 }
}
catch (err)
{
 print("Error: " + err + "\n");
}

InTrust 11.4.2 Customization Kit
Object Library 59

ActiveXObject
This class lets you use COM automation in scripts. It has the same functionality as the comparable class in
Windows Script Host.
You can create ActiveX objects as follows:

// Method 1:
var p = new ActiveXObject("{CB3DF937-8DBB-4130-8A11-D47E12F61315}");
// Here, the argument is the CLSID
// of the object you want to create.
//Method 2:
var p = new ActiveXObject("Scripting.FileSystemObject");
// ProgID is the argument.

After you have created the object, you can access its methods, read and write its properties.
In case of error, an exception is generated, represented by an ActiveXError object. This object class contains
the following fields:

l number
Error code

l text
Message that corresponds to the error code

l description
An optional description of the error

In the following example, possible exceptions are caught:

try
{
var p = new ActiveXObject("SomeCOMObject.ProgID");
p.method();
}
catch(err)
{
 print("Error: " + err);
}

File
NAME TYPE DESCRIPTION

OpenAsTextStream
(

[iomode[,
crmode[,
format]]]

)

method Returns a new TextStream object. See
FileSystemObject.OpenTextFile for details.

InTrust 11.4.2 Customization Kit
Object Library 60

NAME TYPE DESCRIPTION

Delete() method Deletes the file.

Name property Returns the name of the file.

Path property Returns the full path to the file.

DateLastModified property Returns the date and time that the file or folder was last modified.

Size property Returns the size of the file in bytes.

FileSystemObject
NAME TYPE DESCRIPTION

OpenTextFile
(

absolute_path[,
iomode[,
crmode[,
format]]]

)

method Opens the specified file and returns a TextStream object that can be
used to read from the file. Requires the absolute path to the file as a
parameter.

l The iomode parameter can be one of the constants returned by
the properties of the object, which are accessed by the
AccessMode static property.

l The crmode parameter can be one of the constants returned by
the properties of the object, which are accessed by the
CreationDisposition static property.

l The format parameter specifies the encoding of the file. This
can be one of the following string values: "MBCS", "UTF-8",
"UTF-16", "UTF-16LE", "UTF-16BE", "Auto". See the next table
for details.

GetFile(path) method Returns a File object representing the file with the specified path.

GetFolder(path) method Returns a Folder object representing the folder with the specified path.

DeleteFile(path) method Deletes the specified file.

CreationDisposition static
property

Returns an object with the OpenExisting read-only property.

AccessMode static
property

Returns an object with the ForReading read-only property.

Use "MBCS", "UTF-8", "UTF-16LE" or "UTF-16BE" only if you know for certain what file encoding is used.
Otherwise, use "UTF-16" (platform specific) or "Auto". This is the default, which uses the byte order mask (BOM)
to detect file encoding.
The following table shows how the encoding is determined from the BOM and explicitly specified
format parameter.

InTrust 11.4.2 Customization Kit
Object Library 61

"MBCS" "UTF-8" "UTF-16" "UTF-16LE" "UTF-16BE" "AUTO"

<NONE> MBCS UTF-8 UTF-16 p. s. UTF-16LE UTF-16BE MBCS

UTF-8 MBCS UTF-8 UTF-16 p. s. UTF-16LE UTF-16BE UTF-8

UTF-16LE MBCS UTF-8 UTF-16LE UTF-16LE Error UTF-16LE

UTF-16BE MBCS UTF-8 UTF-16BE Error UTF-16BE UTF-16BE

*In the table "p. s." stands for platform-specific byte order.

Folder
NAME TYPE DESCRIPTION

Files array of File objects Provides a list of files contained within the folder.

SubFolders array of Folder objects Provides a list of folders contained within a folder.

Name property Returns the name of the folder.

Path property Returns the full path to the folder.

RegKey
NAME TYPE DESCRIPTION

RegKey([key]) constructor Constructs a new RegKey instance.

Connect(key, computer) method Call this method to connect to the key of the remote registry.

Open(key, subkey) method Call this method to open the specified subkey.

GetDWORD(valuename) method Retrieves a DWORD value.

GetString(valuename) method Retrieves a string value.

GetMultiString(valuename) method Retrieves a multiline string value and returns an array of the
strings.

IsValid property Indicates whether the registry key is valid.

HKEY_CLASSES_ROOT static
property

Returns a new RegKey object pointing to HKCR key.

HKEY_CURRENT_USER static
property

Returns a new RegKey object pointing to HKCU key.

InTrust 11.4.2 Customization Kit
Object Library 62

NAME TYPE DESCRIPTION

HKEY_LOCAL_MACHINE static
property

Returns a new RegKey object pointing to HKLM key.

HKEY_USERS static
property

Returns a new RegKey object pointing to HKU key.

HKEY_PERFORMANCE_
DATA

static
property

Returns a new RegKey object pointing to HKPD key.

HKEY_CURRENT_CONFIG static
property

Returns a new RegKey object pointing to HKCC key.

HKEY_DYN_DATA static
property

Returns new RegKey object pointing to HKDD key.

Example
The following script determines whether HKCR is valid and retrieves some values from the
HKCU\Sofrware\mykey key.

try
{
var rk = new RegKey();
rk.Connect(RegKey.HKEY_CURRENT_USER, "server");
rk.Open(rk, "Software\\mykey");
print("string=" + rk.GetString("StringValue"));
print("dword=" + rk.GetDWORD("DWORDValue"));
print("multistring=");
var ms = rk.GetMultiString("Multiline string value");
for (x in ms) {
print(ms[x]);
}
}
catch (err)
{
print("Error: " + err);
}

ScriptExecObject
NAME TYPE DESCRIPTION

StdErr property Provides access to the stderr output stream of the object. Read-only.

StdOut property Provides access to the stdout output stream of the object. Read-only.

InTrust 11.4.2 Customization Kit
Object Library 63

NAME TYPE DESCRIPTION

Wait method Waits until process return.

Terminate method Ungracefully terminates the process.

ShellObject
NAME TYPE DESCRIPTION

ExpandEnvironmentStrings
(strString)

method Returns an environment variable's expanded value.
Variables in strString should use the % character.

Exec(strCommand) method Unix only.
Runs an application in a child command-shell, providing
access to the StdOut and StdErr streams.
The Exec method returns a ScriptExecObject, which
provides status and error information about a script run
with Exec along with access to the StdOut and StdErr
channels.

Read(arrStreams, nCharCount) static
method

Reads a number of characters specified by nCharCount
from any available streams in arrStreams. Also sets a
Signaled property of the arrStreams array to the index of
a signaled stream.

ReadLine(arrStreams) static
method

Reads a line from any available streams in arrStreams.
Also sets a Signaled property of the arrStreams array to
the index of a signaled stream.

AtEndOfAllStreams(arrStreams) static
method

Checks whether all streams in the arrStreams array are
at the end of the stream.

Example
var sh = new ShellObject();
print(sh.ExpandEnvironmentStrings("PATH=%PATH%"));
var ls = sh.Exec("ls -l");
var out = ls.StdOut;
while (!out.AtEndOfStream) {
s = out.ReadLine();
print(s+"\n");

InTrust 11.4.2 Customization Kit
Object Library 64

SystemInformationObject
NAME DESCRIPTION

GetComputerName(address) Retrieves the NetBIOS or DNS name associated with the specified
computer address.
The address parameter is a NetBIOS name. If the parameter is not
specified, the method works with the local computer.

GetDomainName(address) Retrieves the domain name.
The address parameter is a NetBIOS name. If the parameter is not
specified, the method works with the local computer.

GetComputerRole(address) Retrieves the computer role.
The address parameter is a NetBIOS name. If the parameter is not
specified, the method works with the local computer.

GetPlatformId(address) Retrieves the platform ID.
The address parameter is a NetBIOS name. If the parameter is not
specified, the method works with the local computer.

GetVersionMajor(address) Retrieves the major number of the operating system version of the
computer with the specified address.
The address parameter is a NetBIOS name. If the parameter is not
specified, the method works with the local computer.

GetVersionMinor(address) Retrieves the minor number of the operating system version of the
computer with the specified address.
The address parameter is a NetBIOS name. If the parameter is not
specified, the method works with the local computer.

GetTimeOfDayInfo(address) Returns a TimeOfDayInfoObject object.
The address parameter is a NetBIOS name. If the parameter is not
specified, the method works with the local computer.

IsLocalHost(address) Verifies whether the specified address (or computer name) is the
address of the local computer.
The address parameter is a NetBIOS name or an IP address. If the
parameter is not specified, the method works with the local
computer.

Example
The following script displays all available information about the "SERVER" computer.

try
{
var si = new SystemInformationObject();
print(si.GetComputerName("server"));
print(si.GetDomainName("server"));
print(si.GetPlatformId("server"));

InTrust 11.4.2 Customization Kit
Object Library 65

print(si.GetVersionMajor("server"));
print(si.GetVersionMinor("server"));
print(si.IsLocalHost("server"));

var ti = si.GetTimeOfDayInfo("server");
print(ti.elapsedt);
print(ti.msecs);
print(ti.hours);
print(ti.mins);
print(ti.secs);
print(ti.hunds);
print(ti.timezone);
print(ti.tinterval);
print(ti.day);
print(ti.month);
print(ti.year);
print(ti.weekday);
}
catch (err)
{
print("Error: " + err);
}

TextStream
NAME TYPE DESCRIPTION

Read([count]) method Returns a single character (by default) or the specified number of
characters according to the current encoding.

ReadLine() method Gets a line from the file.

Close() method Closes the file. If you do not close the file explicitly, it will be
automatically closed during the next garbage collection session.

AtEndOfStream property Returns true if the file pointer is at the end of a TextStream file; false
otherwise. Read-only.

TellG property Returns the number of bytes read from the stream and dispatched into
the script. Not aligned to internal buffer boundary.

TimeOfDayInfoObject
NAME DESCRIPTION

elapsedt Specifies the number of seconds since 00:00:00, January 1, 1970, GMT.

InTrust 11.4.2 Customization Kit
Object Library 66

NAME DESCRIPTION

msecs Specifies the number of milliseconds from an arbitrary starting point (system reset).

hours Specifies the current hour. Valid values are 0 through 23.

mins Specifies the current minute. Valid values are 0 through 59.

secs Specifies the current second. Valid values are 0 through 59.

hunds Specifies the current hundredth of a second. Valid values are 0 through 99.

timezone Specifies the time zone of the server. This value is calculated, in minutes, from Greenwich
Mean Time (GMT). For time zones west of Greenwich, the value is positive; for time zones
east of Greenwich, the value is negative. A value of -1 indicates that the time zone is
undefined.

tinterval Specifies the time interval for each tick of the clock. Each integral integer represents one ten-
thousandth of a second (0.0001 second).
day Specifies the day of the month. Valid values are 1 through 31.

month Specifies the month of the year. Valid values are 1 through 12.

year Specifies the year.

weekday Specifies the day of the week. Valid values are 0 through 6, where 0 is Sunday, 1 is Monday,
and so on.

See also the example for the SystemInformationObject object.

InTrust-Specific Objects

Glossary
An InTrust organization parameter is a setting that affects some aspect of InTrust operation related to agents,
jobs, licenses and so on. In InTrust Manager, these settings can be configured in the properties of the InTrust
root node, an InTrust server or an agent.
A facet is a file with an agent's organization parameter settings. An agent has one facet per InTrust server; if an
agent responds to multiple servers, it has multiple facets. The file is located in the config subfolder of the agent
installation folder, and the file name is the GUID of the server from which the agent inherits organization
parameter settings.
A facet can contain organization parameter values defined at the following three levels:

1. Organization level, if any parameters are inherited all the way down

2. Server level, if any parameters are defined for the InTrust server and inherited by the agent

3. Agent level, if any parameters are defined specifically for the agent

InTrust 11.4.2 Customization Kit
Object Library 67

Organization parameter settings can be read using the ADCEnvironment object. See Organization Parameter
Editor for details about setting parameter values for organizations, servers and agents.

Generic Objects
l ScriptState

l GlobalState

l Reference

l ADCEnvironment

Audit Script Object Model
The following objects are available to scripts in custom text log data sources. In addition, these data sources can
use all objects available to custom scripted data sources.

l GlobalObject

l AuditProvider

l Event

l Position

l ErrorInfo

Script Callbacks

Provider callbacks
NAME DESCRIPTION

Audit_EnumInstances(host) Returns a two-dimensional string array, where the nested arrays have two
elements. Element [i][0] is the name of the i-th instance and element [i][1] is
a display name. For Windows computers, the display name is the NetBIOS
name. For Unix computers, it is the localhost name.
The host parameter can be one of the following:

l Empty string for localhost

l Host name

l IP address

Audit_BeforeCollection No return value.

InTrust 11.4.2 Customization Kit
Object Library 68

https://support.quest.com/technical-documents/intrust/11.4.2/special-purpose-commands-and-utilities/organization-parameter-editor
https://support.quest.com/technical-documents/intrust/11.4.2/special-purpose-commands-and-utilities/organization-parameter-editor

NAME DESCRIPTION

Audit_Connect(instance, log) Boolean.

Audit_Seek(position) Boolean. A Position object is passed to this function. Audit_Seek uses the
object to determine which event gathering stopped at when data was last
collected.
If the precise position is found, true is returned, otherwise false is returned. If
the result is false, InTrust session details will show that the position cannot
be found.

Audit_CollectEvents() Returns an object which is a collection of user-supplied properties.
Performs log gathering.

Audit_AfterCollection(success) No return value.

Comparer callback
NAME DESCRIPTION

Audit_ComparePositions(p1, p2) Returns a signed integer indicating the ordering of p1
and p2.

l >0 if p1 > p2

l 0 if p1 == p2

l <0 if p1 < p2

where p1 and p2 are Position objects.

Audit Script Engine and Audit Script Host
Cooperation
The audit script engine exposes a C++ interface to ECMAScript.
This interface does the following:

l Supports the scripting object model

l Dispatches calls between the audit script host and the scripting machine

l Converts parameters from C++ types to scripting types and vice versa

Type conversion takes place as follows:

l C++ type to script callback:

InTrust 11.4.2 Customization Kit
Object Library 69

CONVERTED FROM CONVERTED TO

AuditScriptEngine::EnumInstances script::Audit_EnumInstances

AuditScriptEngine::GetDataName script:: Audit_GetDataName

AuditScriptEngine::BeforeCollection script:: Audit_BeforeCollection

AuditScriptEngine::Connect script:: Audit_Connect

AuditScriptEngine::Seek script:: Audit_Seek

AuditScriptEngine::CollectEvents script:: Audit_CollectEvents

AuditScriptEngine::AfterCollection script:: Audit_AfterCollection

l Script object model to C++ type:

CONVERTED FROM CONVERTED TO

AuditProvider::SubmitEventPositionPair AuditScriptHost:: SubmitEventPositionPair

AuditProvider::LogMessage AuditScriptHost::LogMessage

AuditProvider::OperationStatus AuditScriptHost::OperationStatus

AuditProvider::Trace AuditScriptHost::Trace

Audit Script Position Processor and Audit
Script Host Cooperation
Audit script position processor is a middle layer between Audit script host and position comparer script. Audit
script position processor should dispatch calls from AuditScriptPositionProcessor::ComparePositions to the
script's Audit_ComparePositions callback.

Error Reporting
Audit script engine errors can be reported in two ways:

l Using the ErrorInfo object (the result is written to the InTrust Server log)

l As exceptions of the ADCException type for the audit script host to catch (the result is included in the
InTrust session information)

Notes about exceptions:

InTrust 11.4.2 Customization Kit
Object Library 70

l Scripting callbacks should raise a JScript exception if they encounter any exceptional situation.

l The audit script engine should catch such exceptions, translate them to ADCException objects and
throw them again as C++ exceptions.

l Script exceptions are translated into C++ exceptions. Exception information appears in session details.

l The audit script position processor has the same error handling model as the audit script engine.

ADCEnvironment
The object is used for reading InTrust organization parameter settings from agents. This object is available only
with the ECMAScript object model.

Methods
NAME DESCRIPTION

EnumFacets() Enumerates the facets available for an agent and returns an array
of facet names.

GetEnvironmentValue([Facet,] Name) Returns the value of the specified organization parameter.
The optional Facet string argument is the name of a facet, as
returned by the EnumFacets() method. If this argument is not
specified, the method returns the organization parameter value
from the first available facet.
The Name string argument is the name of the organization
parameter value.

GetEnvValueWithDefault([Facet,]
Name, DefValue)

Returns the value of the specified organization parameter. This
method is different from GetEnvironmentValue() in that you can
specify a default return value with the DefValue argument. This
default value is returned if the specified organization parameter is
not found, so you do not have to perform any exception checks in
your code.
The optional Facet string argument is the name of a facet, as
returned by the EnumFacets() method. If this argument is not
specified, the method returns the organization parameter value
from the first available facet.
The Name string argument is the name of the organization
parameter value.
The DefValue argument is a string or an integer.

ExpandEnvironmentString(String) This method expands the name of the supplied InTrust-specific
environment variable, such as %ADC_INSTALL_PATH% or
%ADC_DATA_PATH%.

InTrust 11.4.2 Customization Kit
Object Library 71

Example
Running the following script in a single-server InTrust organization:

var objEnv = new ADCEnvironment();
var Facets = objEnv.EnumFacets();
for(var i = 0; i < Facets.length; i++)
{
var cputhrottling = objEnv.GetEnvValueWithDefault(Facets[i], "ADC_
AgentCPUThrottlingValue", 100);
Trace(40, "Facet: " + Facets[i]);
Trace(40, "CPU: " + cputhrottling);
}
var datapath = objEnv.GetEnvironmentValue("adc_data_path");
Trace(40, "Data Path: " + datapath);
var taskpath = objEnv.ExpandEnvironmentString(datapath + "\\tasks");
Trace(40, "Tasks Path: " + taskpath);

will produce results similar to the following in the trace file:
(392) Thu_Aug_23_21.12.32.437_2007 | 40 | [027035d8] ScriptContext_SM: Facet: {ae146e4d-9fc4-47ae-
97e0-bf5cb55b0890} (string)
(392) Thu_Aug_23_21.12.32.437_2007 | 40 | [027035d8] ScriptContext_SM: CPU: 100 (string)
(392) Thu_Aug_23_21.12.32.437_2007 | 40 | [027035d8] ScriptContext_SM: Data Path: %ADC_INSTALL_
PATH%/data (string)
(392) Thu_Aug_23_21.12.32.437_2007 | 40 | [027035d8] ScriptContext_SM: Tasks Path:
C:\WINNT\ADCAgent/data\tasks (string)

AuditProvider
Non-creatable.

NAME TYPE DESCRIPTION

SubmitEventPositionPair(event, position) method Submits event and position pair to the audit
provider.

LogMessage(messagetext, systemmessage,
messageseverity)

method messageseverity is an integer:
4 = success
3 = information
2 = error
1 = warning

OperationStatus(statustext) method Trace(level, msg) method recommended
level values:
0 = TraceDisabled
10 = TraceCritical
20 = TraceWarning
30 = TraceNormal
40 = TraceDebug

InTrust 11.4.2 Customization Kit
Object Library 72

Example
AuditProvider.SubmitEventPositionPair(new Event(), new Position());

ErrorInfo
This object lets you provide detailed error messages in the InTrust Server log. The object is available only in the
object model of audit scripts based on JScript or VBScript.

NAME TYPE DESCRIPTION

Number property Event ID of the error.

Description property Error description.

Raise method Submits the error to the InTrust server log; this method has no parameters.

Example
This snippet puts an error event in the InTrust Server log. The message description contains the string
"Invalid password".

ErrorInfo.Description = "Invalid password";
ErrorInfo.Raise();

Event
Creatable.
This object is a collection of user-supplied properties.

Example
x = new Event;
x.prop1 = "val1";
x.prop2 = new Date()

GlobalObject
Non-creatable.

NAME TYPE DESCRIPTION

AuditProvider property Returns an AuditProvider object.

InTrust 11.4.2 Customization Kit
Object Library 73

GlobalState
The GlobalState object is similar to the ScriptState object, but with the following differences:

l It is available only in JScript.

l It stores the state of the object only as long as the agent process is active.

l It can store objects of any type.

Example
if (!GlobalState.Item("shell"))
{
GlobalState.Item("shell") = new ActiveXObject("WScript.Shell");
}
#TRACE 40 GlobalState.Item("shell").Value.ExpandEnvironmentStrings("%TMP%")

Position
Creatable.

NAME TYPE DESCRIPTION

RecordKey property Has integral type

Time property Has Date type

Values property Collection of user-supplied properties

Example
x = new Position;
x.RecordKey = 12;
x.Time = new Date();
x.Values.prop1 = "val1";
x.Values.prop2 = new Date();

Reference
The Reference object is a wrapper used mainly for passing the out parameter to COM methods. To create a
call, use the function CreateReference(value) where value is an optional argument that specifies the start
value. This object is available when you use the ECMAScript or JScript object model.
You cannot correctly reference a property if at least one of its parameters is [in, out].

InTrust 11.4.2 Customization Kit
Object Library 74

IDL example
HRESULT Increment([in, out] LONG * param);

JScript example
var ref = CreateReference(5);
var obj = new ActiveXObject("MyObject");
obj.Increment(ref);
x = ref; // x = 6;
ECMAScript example:
var ref = CreateReference(5);
var obj = new ActiveXObject("MyObject");
DispInvoke(obj, "Increment", ref);
x = ref.RefOn; // x = 6;

ScriptState
ScriptState is an object with arbitrary fields that stores values between calls and between InTrust agent restarts.
This object is available when you use the ECMAScript or JScript object model.
The ScriptState object can store only the following data types:

l Strings

l Numeric types

l Dates

l Arrays of all of the above

GlobalState is a similar object that can store any data type, but is available only in the JScript object model.
In the following two examples, every fifth event is matched.

ECMAScript Example
function OnEvent(e)
{
if (ScriptState.count == 5)
{
match(e);
ScriptState.count = 0;
}
else
{
ScriptState.count++;
}
}

InTrust 11.4.2 Customization Kit
Object Library 75

JScript Example
function OnEvent(e)
{
if (ScriptState.Item("count") == 5)
{
match(e);
ScriptState.Item("count") = 0;
}
else
{
ScriptState.Item("count")++;
}
}

InTrust 11.4.2 Customization Kit
Object Library 76

About us

We are more than just a name
We are on a quest to make your information technology work harder for you. That is why we build community-
driven software solutions that help you spend less time on IT administration and more time on business
innovation. We help you modernize your data center, get you to the cloud quicker and provide the expertise,
security and accessibility you need to grow your data-driven business. Combined with Quest’s invitation to the
global community to be a part of its innovation, and our firm commitment to ensuring customer satisfaction, we
continue to deliver solutions that have a real impact on our customers today and leave a legacy we are proud of.
We are challenging the status quo by transforming into a new software company. And as your partner, we work
tirelessly to make sure your information technology is designed for you and by you. This is our mission, and we
are in this together. Welcome to a new Quest. You are invited to Join the Innovation™.

Our brand, our vision. Together.
Our logo reflects our story: innovation, community and support. An important part of this story begins with the
letter Q. It is a perfect circle, representing our commitment to technological precision and strength. The space in
the Q itself symbolizes our need to add the missing piece — you — to the community, to the new Quest.

Contacting Quest
For sales or other inquiries, visit www.quest.com/contact.

Technical support resources
Technical support is available to Quest customers with a valid maintenance contract and customers who have
trial versions. You can access the Quest Support Portal at https://support.quest.com.
The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours
a day, 365 days a year. The Support Portal enables you to:

l Submit and manage a Service Request

l View Knowledge Base articles

l Sign up for product notifications

l Download software and technical documentation

l View how-to-videos

l Engage in community discussions

l Chat with support engineers online

l View services to assist you with your product

InTrust 11.4.2 Customization Kit
About us 77

https://www.quest.com/contact
https://support.quest.com/

	InTrust Customization Overview
	InTrust Script Objects
	Parameters
	Script Body
	Using Parameters in Script Code
	ECMAScript
	JScript and VBScript
	PowerShell

	Customizable Parameters
	AccessType
	Getting the Access Type Selector

	Text
	Number
	List
	DateTimeRange
	ExpectedTime
	RangeList
	EventType
	Filter
	Choice
	Password

	InTrust Server Tracing
	Configuration File Format

	Distributing Files to Agent Computers
	Case Study: Enabling Tracing on Multiple Computers
	Objective
	Solution
	Details

	How to...
	Working with Data Sources
	Topics
	Creating a Data Source
	Text Log Data Sources
	Custom Scripted Data Sources

	Generating Events
	Typical Custom Text Log Data Source Logic
	Glossary
	Typical Usage

	Customizing Data Source Filters
	Event Fields

	Creating Rules
	Importing and Exporting Rules
	See Also
	Rule Structure
	Specifying Arguments
	Pre-Filtering
	Matching

	Examples
	ECMAScript
	REL

	Scripting Response Actions
	Execute Script Response Action

	Enumerating Sites

	Language Reference
	ECMAScript
	JScript
	REL
	Reference
	Words
	Formal Language Grammar

	Expressions
	Expression Types

	Functions
	Custom Functions
	Built-In Function Library

	PowerShell Script

	Object Library
	Reference
	Standard Objects
	Emulated Standard Objects
	Example
	ActiveXObject
	File
	FileSystemObject
	Folder
	RegKey
	Example

	ScriptExecObject
	ShellObject
	Example

	SystemInformationObject
	Example

	TextStream
	TimeOfDayInfoObject

	InTrust-Specific Objects
	Glossary
	Generic Objects
	Audit Script Object Model
	Script Callbacks
	Provider callbacks
	Comparer callback

	Audit Script Engine and Audit Script Host Cooperation
	Audit Script Position Processor and Audit Script Host Cooperation
	Error Reporting
	ADCEnvironment
	Methods
	Example

	AuditProvider
	Example

	ErrorInfo
	Example

	Event
	Example

	GlobalObject
	GlobalState
	Example

	Position
	Example

	Reference
	IDL example
	JScript example

	ScriptState
	ECMAScript Example
	JScript Example

	About us
	Contacting Quest
	Technical support resources

