
Quest® InTrust 11.5

SDK Reference

© 2019 Quest Software Inc. ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a
software license or nondisclosure agreement. This softwaremaybe used or copied only in accordance with the termsof the
applicable agreement. No part of this guidemaybe reproduced or transmitted in any form or byanymeans, electronic or
mechanical, including photocopying and recording for anypurpose other than the purchaser’s personal use without the written
permission of Quest Software Inc.

The information in this document is provided in connection with Quest Software products. No license, expressor implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest Software
products. EXCEPT ASSET FORTH IN THETERMSANDCONDITIONSASSPECIFIED IN THELICENSEAGREEMENT FOR
THISPRODUCT, QUEST SOFTWAREASSUMESNOLIABILITYWHATSOEVER ANDDISCLAIMSANYEXPRESS, IMPLIED
OR STATUTORYWARRANTYRELATINGTO ITSPRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTYOF MERCHANTABILITY, FITNESSFOR APARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NOEVENT
SHALLQUEST SOFTWAREBELIABLEFOR ANYDIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIALOR
INCIDENTALDAMAGES (INCLUDING,WITHOUT LIMITATION, DAMAGESFOR LOSSOF PROFITS, BUSINESS
INTERRUPTIONOR LOSSOF INFORMATION) ARISINGOUT OF THEUSEOR INABILITYTOUSETHISDOCUMENT,
EVEN IF QUEST SOFTWAREHASBEEN ADVISEDOF THEPOSSIBILITYOF SUCHDAMAGES. Quest Softwaremakesno
representationsor warrantieswith respect to the accuracyor completenessof the contents of this document and reserves the right
to make changes to specificationsand product descriptionsat any time without notice. Quest Software doesnot make any
commitment to update the information contained in this document.

If you have anyquestions regarding your potential use of thismaterial, contact:

Quest Software Inc.

Attn: LEGALDept

4 PolarisWay

Aliso Viejo, CA 92656

Refer to our Web site (https://www.quest.com) for regional and international office information.
Patents

Quest Software is proud of our advanced technology. Patents and pending patentsmayapply to this product. For themost current
information about applicable patents for this product, please visit our website at https://www.quest.com/legal.
Trademarks

Quest, the Quest logo, and Join the Innovation are trademarksand registered trademarksof Quest Software Inc. For a complete
list of Quest marks, visit https://www.quest.com/legal/trademark-information.aspx. All other trademarksand registered trademarks
are property of their respective owners.
Legend

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data if instructions
are not followed.

IMPORTANT, NOTE, TIP,MOBILE, or VIDEO: An information icon indicates supporting information.

InTrust SDK Reference
Updated - September 2019
Version - 11.5

https://www.quest.com/
https://www.quest.com/legal
https://www.quest.com/legal/trademark-information.aspx

Contents

InTrust SDK Overview 8
Requirements 8
Required Permissions 9
Standalone Setup 9
Configuring C#References 9

Repository Services API 10
Connecting to a Repository 10
Overview of Repository Access 10
Examples 12
Details 12

Getting and Putting Data 13
Overview 13
Writing 14
Reading 14
Getting Records 15
Example (C#) 16

Getting Events 16
Example (C#) 16
Composing REL Queries 17
Searchable Event and Record Fields 18

Writing Records 21
Approach 1: WritingWhole Record Structures 21
Approach 2: Splitting Records forWriting 21
Example (C#) 21

Writing Events 31
Sort Order forWriting 31
Out-of-OrderWriting 31

Repository Record Data Structures 31
tags 32
contents 32
contents2 33
record 34
record2 34
Recommendations on Setting Tags 35

Event Record Data Structures 35
base_event 35
event_with_read_extensions 36
named_string 36
insertion_string 37
augmented_insertion_string 37

InTrust 11.5 SDKReference 3

event_with_extensions 37
event_with_extensions2 37
resolved_string 38

Creating and Removing Repositories 39
Working with Repository Properties 39
Using Custom Attributes 40
Example (C#) 41

Log Knowledge Base API 42
Example 42
Log Transformation Rule Format 45

Enumerations 47
CustomizableCredentialsType 47
DomainEnumerationType 47
IndexBuilderType 47
IndexLocationType 48
RepositoryCommitType 48
ScriptLanguage 48
SiteCollectionType 48
SiteObjectType 49
SiteType 49

Interfaces 50
IActiveDirectorySiteSiteObject 56

Methods 56
IBulkEventWithReadExtensions 57

Method 57
IBulkRecord 58

Method 58
IBulkRecord2 58

Method 58
IComputerListDomainEnumeration 59

Methods 59
IComputerListFileSiteObject 60

Methods 60
IComputerSiteObject 61

Methods 61
ICookie 62

Method 62
ICredentials 62

Methods 62
ICustomIndexLocation 63

InTrust 11.5 SDKReference 4

Methods 64
ICustomCredentials 64

Method 64
ICustomizableCredentials 65

Method 65
IDomainEnumeration 65

Method 66
IDomainSiteObject 66

Methods 66
IEnumerationScriptSiteObject 67

Methods 67
IEventToRecordFormatter 69

Method 69
IForwardingFilterCollection 69

Methods 69
IForwardingSettings 70

Methods 70
IIdleRepository 75

Method 75
IIdleRepositoryFactory 75

Method 76
IIndexBuilder 76

Method 76
IIndexingSettings 77

Methods 77
IIndexLocation 79

Method 79
IIndexManager 80

Methods 80
IIndexManagerFactory 80

Methods 80
IInTrustEnvironment 81

Methods 82
IInTrustEnvironment3 83

Methods 83
IInTrustEventory 85

Methods 85
IInTrustEventoryItem 86

Methods 86
IInTrustEventoryItemCollection 87

Methods 87
IInTrustOrganization 89

Methods 89

InTrust 11.5 SDKReference 5

IInTrustOrganization3 90
Methods 90

IInTrustOrganizationCollection 93
Methods 93

IInTrustRepository3 93
Methods 94

IInTrustRepositoryCollection2 98
Methods 98

IInTrustRepositorySearcher 100
Method 101

IInTrustScriptCollection 101
Methods 101

IInTrustServer 102
Methods 103

IInTrustServer3 103
Methods 103

IInTrustServerCollection 105
Methods 105

IInTrustServerForwardingSupport 106
Methods 106

IInTrustSiteCollection 107
Methods 107

IIPAddressRangeSiteObject 108
Methods 109

IJob2 110
Method 110

IMessageFormatCustomInfo 111
Methods 111

IMessageFormatInfo 111
Methods 112

IMessageFormatTypeInfo 112
Methods 113

IMessageFormatTypeInfoCollection 114
Methods 114

IMicrosoftNetworkSite 115
Methods 115

IMultiRepositorySearcher 117
Methods 117

IMultiRepositorySearcherFactory 118
IObservable 118

Method 118
IObserver 119

Methods 119

InTrust 11.5 SDKReference 6

IOrganizationalUnitSiteObject 120
Methods 120

IProperty 122
Methods 122

IPropertyCollection 124
Methods 124

IRepositoryRecordInserter 125
Methods 125

IRepositoryRecordInserter2 127
Methods 127

IRepositoryRecordInserterLight 130
Method 130

IScript 131
Methods 131

IScriptArgument 134
Methods 134

IScriptArgumentCollection 136
Methods 136

IScriptParameter 137
Methods 137

IScriptParameterCollection 139
Methods 140

ISite 141
Methods 141

ISiteComputer 145
Methods 145

ISiteIndexBuilder 148
Methods 148

ISiteObject 149
Methods 150

ISiteObjectCollection 150
Methods 150

ITask2 152
Method 152

ITransportInfo 153
Methods 153

ITransportInfoCollection 153
Methods 153

About us 155
Contacting Quest 155
Technical support resources 155

InTrust 11.5 SDKReference 7

InTrust SDK Overview
The InTrust SDK makes InTrust functionality available to applications. At this time, the SDK includes the
following components:

l Repository Services API

l Log Knowledge Base API

The InTrust SDK is included in the InTrust Server component and works on any computer where InTrust Server
is deployed.

Requirements
If you want to install the SDK separately from InTrust Server, the computer must meet the following requirements
(similar to the requirements for InTrust Server):

Architecture x64

Operating System Any of the following:

l Microsoft Windows Server 2016

l Microsoft Windows Server 2012 R2

l Microsoft Windows Server 2012

l Microsoft Windows Server 2008 R2

Memory Min. 6GB

Additional Software and
Services

l Microsoft .NET Framework 4.5 with all the latest updates

l Update for Universal C Runtime in Windows,
available from https://support.microsoft.com/en-us/kb/2999226 at the
time of this writing

CAUTION: To use the InTrust API with old versions of Windows PowerShell (2.0 and earlier), make
sure you configure PowerShell to use the version of the .NET runtime that the SDK requires. For
that, create the powershell.exe.config (or powershell_ise.exe.config) file in the same folder as
powershell.exe (or powershell_ise.exe) file with content like the following:

<?xml version="1.0"?>
<configuration>
 <startup useLegacyV2RuntimeActivationPolicy="true">
 <supportedRuntime version="v4.0"/>
 <supportedRuntime version="v2.0.50727"/>
 </startup>
</configuration>

InTrust 11.5 SDKReference
InTrust SDKOverview 8

https://support.microsoft.com/en-us/kb/2999226

Required Permissions
To be able to use the features of the InTrust SDK, your code must be run under an account that is listed as an
InTrust organization administrator. For details about setting up this privilege, see InTrust Organization
Administrators.

Standalone Setup
To install the InTrust SDK separately from InTrust Server, run the INTRUST_SDK.11.5.*.*.msi installation
package provided to you. It is located in the InTrust\Server folder in your InTrust distribution.

Configuring C# References
To make sure that C# bindings work, enable references to the following COM type libraries:

1. InTrust Environment 1.0 Type Library

2. Repository Record Inserter 1.0 Type Library

3. Repository Services 1.0 Type Library

For each of them, open the properties and set the Embed Interop Types parameter to False.

InTrust 11.5 SDKReference
InTrust SDKOverview 9

http://support.quest.com/technical-documents/intrust/[%25=CommonVariables.Version%25]/deployment-guide/intrust-configuration/configuring-access-rights/intrust-organization-administrators
http://support.quest.com/technical-documents/intrust/[%25=CommonVariables.Version%25]/deployment-guide/intrust-configuration/configuring-access-rights/intrust-organization-administrators

Repository Services API
This topic describes the API that InTrust provides for repositories. This API lets you do the following:

l Connect to a repository for searching and writing

l Get records from a repository by searching

l Put records in a repository

l Manage repositories:

o Remove (unregister) them

o Create them

o Work with repository properties

The API is implemented as a collection of COM objects that become available after you have installed the
InTrust SDK. Use the interfaces described in the topics listed below; call the methods of those interfaces for
access to records and repositories.

l Connecting to a Repository

l Getting Records

l Writing Records

l Creating and Removing Repositories

l Repository Record Data Structures

l Event Record Data Structures

l Working with Repository Properties

l Interfaces

Connecting to a Repository
Use the interfaces listed below for access to an InTrust repository. Once you have gained access, you can
search for records in the repository (see Getting Records) and write records to it (see Writing Records).

Overview of Repository Access
The following diagram shows the relationships between the InTrust SDK's interfaces used for getting access to a
repository. An arrow indicates that an interface returns another interface.

InTrust 11.5 SDKReference
RepositoryServicesAPI 10

Before you can have access to an InTrust repository, you need to initialize the InTrust environment. For
that, create an object that implements the IInTrustEnvironment interface. This object makes the current
InTrust organization, its servers and its repositories available to you. The relationships between these
items are as follows:

l An InTrust organization provides a single configuration database for one or more InTrust servers.

l An InTrust repository is registered with an InTrust organization, and its entry is contained in the
configuration shared by all InTrust servers in the organization.

l Specific InTrust servers manage specific repositories but do not “own” them; however, the
organization does.

The IInTrustEnvironment interface provides the environment for working with all available InTrust organizations.
You can use two methods to get the organization you need:

1. Get a collection of known organizations (Organizations method of the IInTrustEnvironment interface)
and pick the necessary one. This involves working with the IInTrustOrganizationCollection interface. In
this case, organizations are discovered by an Active Directory query.

2. Connect directly to an InTrust server by name (ConnectToServer method of the IInTrustEnvironment
interface). This involves working with the IInTrustServer interface, which you can use to get the
organization that the server is in.

Once you have gained access to an organization, use its interface (IInTrustOrganization3) to get a collection of
the repositories in it (IInTrustRepositoryCollection2) and get the repository you are looking for
(IInTrustRepository3).
The information above concerns access to regular production repositories. However, a valid file structure with
data can also act as an InTrust repository for the purposes of searching and writing, even if it is not included in
InTrust configuration. It is called an idle repository. An idle repository has no representation in the InTrust
environment, so you need to construct its interface to gain access. For details, see Creating and Removing
Repositories.

InTrust 11.5 SDKReference
RepositoryServicesAPI 11

Examples
If you know the name of the organization for a specific repository, follow the organization → repository
chain of access:

{
IInTrustEnvironment intrust_environment = new InTrustEnvironment();
IInTrustOrganizationCollection organizations = intrust_

environment.Organizations;
IInTrustOrganization3 intrust_organization =

organizations.Cast<IInTrustOrganization3>().Where(x => x.Name == "My
Organization").First();

IInTrustRepositoryCollection2 repositories = intrust_
organization.Repositories2;

IInTrustRepository3 repository = repositories.Cast<IInTrustRepository3>
().Where(x => x.Name == "My Repository").First();
}

If you only know the name of a server in the organization, follow the server → organization → repository
chain of access:

{
IInTrustEnvironment intrust_environment = new InTrustEnvironment();
IInTrustServer intrust_server = intrust_environment.ConnectToServer("My

Server");
IInTrustOrganization3 intrust_organization = intrust_server.Organization as

IInTrustOrganization3;
IInTrustRepositoryCollection2 repositories = intrust_organization.Repositories2;
IInTrustRepository3 repository = repositories.Cast<IInTrustRepository3>().Where

(x => x.Name == "My Repository").First();
}

Details
Use the following interfaces for repository access and related tasks:

l IInTrustEnvironment

l IInTrustOrganizationCollection

l IInTrustOrganization

l IInTrustServerCollection

l IInTrustServer

l IInTrustRepositoryCollection2

l IInTrustRepository3

InTrust 11.5 SDKReference
RepositoryServicesAPI 12

Getting and Putting Data
The InTrust repository was originally developed to store event log data, and this dictated the design choices that
it is based on. However, the repository architecture is flexible enough for storing generic records containing
arbitrary key-value pairs. The repository API provides tools for reading and writing both kinds of data.
Importantly, the repository is a document-oriented store. If you need to implement any inter-document
relationships, you need to define them at the document contents level.

Overview
The following diagram shows the relationships between the InTrust SDK's interfaces used for reading and
writing repository data. An arrow indicates that an interface returns another interface. Dashed lines between
interfaces mean they don't return one another, but are used together for particular tasks.

See below for details about building program flow that uses these relationships. For a diagram of how to obtain
the IInTrustRepository3 interface, see Connecting to a Repository.

InTrust 11.5 SDKReference
RepositoryServicesAPI 13

Writing
Whether you want to write generic records or events, first you need access to the IRepositoryRecordInserter or
IRepositoryRecordInserter2 interface. Take the following steps:

1. Connect to the repository you need, as described in Connecting to a Repository.

2. Get the IRepositoryRecordInserter or IRepositoryRecordInserter2 interface.
This interface manages the writing of data to a repository. To obtain it, call the Inserter method of the
IInTrustRepository3 interface of the repository you are connected to. A new inserter is created every time
you make this call. You should obtain it once and reuse it for all writing to the repository.

For details about the next steps, see the following topics:

l Writing Records

l Writing Events

Reading
Reading data from a repository means searching the repository for it. Search queries use the REL language
described in InTrust Customization Kit. For a list of fields that you can use in search queries, see Searchable
Event and Record Fields. For some important REL query specifics, see Composing REL Queries.
The data-retrieving functionality of the InTrust repository API is modeled after the push-based notification system
used in the Microsoft .NET Framework. Therefore, the API provides similar interfaces (such as IObservable and
IObserver).

To perform a repository search

1. Connect to the repository you need, as described in Connecting to a Repository. This gives you access
to the IInTrustRepository3 interface.

2. Use the Searcher method of the IInTrustRepository3 interface to get the
IInTrustRepositorySearcher interface.

3. Use that interface's Searchmethod to get an IObservable interface.

4. Subscribe to the notification using the IObserver interface.

Example of a helper function (C#):

static void search_events(IInTrustRepository intrust_repository, string
query)
{

IObservable observable = intrust_repository.Searcher().Search(query);
MyObserver observer = new MyObserver();
observable.Subscribe(observer, out observer.m_cookie);

}

The repository API also provides a way to perform searches on multiple repositories simultaneously. The
IMultiRepositorySearcher interface is provided for this purpose.

InTrust 11.5 SDKReference
RepositoryServicesAPI 14

https://support.quest.com/technical-documents/intrust/11.5/Customization Kit/

To perform a multi-repository search

1. Obtain the IInTrustRepositorySearcher interfaces for the repositories you need.

2. Construct a IMultiRepositorySearcher interface using the IMultiRepositorySearcherFactory interface.

3. In the newly-created interface, specify the interfaces from the first step using the
MakeMultiSearchObject method.

4. Use the returned interface as a regular IInTrustRepositorySearcher interface, as described above.

Example of a multi-repository search:

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("10.30.38.230");
IInTrustOrganization org = server.Organization;
IInTrustEventory evs = org.Eventory;
string eventory_str = evs.Eventory;
IMultiRepositorySearcherFactory multi_searcher_fac = new
MultiRepositorySearcherFactory();
IMultiRepositorySearcher multi_searcher = multi_searcher_
fac.CreateMultiRepositorySearcher(eventory_str);

The example above involves an explicitly specified log knowledge base (see Log Knowledge Base API for
details). To use the default log knowledge base, rewrite it as follows:

IMultiRepositorySearcherFactory multi_searcher_fac = new
MultiRepositorySearcherFactory();
IMultiRepositorySearcher multi_searcher = multi_searcher_
fac.CreateMultiRepositorySearcher(null);

For details about the next steps, see the following topics:

l Getting Records

l Getting Events

The following interfaces are involved in repository searches:

l IObservable
Enables push-based notification. Implement this interface as the source of discovered records.

l IObserver
Gets push-based notifications. Implement this interface as the search result handler.

l ICookie
Keeps a search active. It is unlikely that you will need to handle this interface directly, but it helps to know
that it is involved in searching.

Getting Records
A repository search returns data wrapped in a polymorphic IUnknown interface, as described in Getting and
Putting Data. To interpret the data as repository records, cast it as IBulkRecord2.

InTrust 11.5 SDKReference
RepositoryServicesAPI 15

Example (C#)
class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver
{

public REPOSITORYSERVICESLib.ICookie m_cookie;
public MyObserver()
{
}
public void OnDone()
{

Console.WriteLine("Search done");
}
public void OnError(int hr, string description)
{

Console.WriteLine("Search error: {0}", description);
}
public void OnNext(object data)
{

if (data != null)
{

IBulkRecord2 bulk_record2 = (data as IBulkRecord2);
List<record2> records = bulk_record.GetRecords().Cast<record2>

().ToList<record2>();
int record_count = 0;
foreach (record2 my_record in records)
{

++record_count;
}

}
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(data);

}
}

For details about what repository records are, see Repository Record Data Structures.

Getting Events
A repository search returns data wrapped in a polymorphic IUnknown interface, as described in Getting and
Putting Data. To interpret the data as event records, cast it as IBulkEventWithReadExtensions.

Example (C#)
class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver
{

public REPOSITORYSERVICESLib.ICookie m_cookie;
public MyObserver()
{
}
public void OnDone()
{

Console.WriteLine("Search done");

InTrust 11.5 SDKReference
RepositoryServicesAPI 16

}
public void OnError(int hr, string description)
{

Console.WriteLine("Search error: {0}", description);
}
public void OnNext(object data)
{

if (data != null)
{

IBulkEventWithReadExtensions bulk_event = (data as
IBulkEventWithReadExtensions);

List<event_with_read_extensions> events = bulk_event.GetEvents
().Cast<event_with_read_extensions>().ToList<event_with_read_extensions>();

int event_count = 0;
foreach (event_with_read_extensions my_event in events)
{

++event_count;
}

}
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(data);

}
}

For details about what event records are, see Event Record Data Structures.

Composing REL Queries
REL is an expression language developed specifically for InTrust, and it is used for multiple purposes besides
repository searching.
The following topics about REL in the InTrust Customization Kit contain information that is fully applicable to
queries used for searching in repositories:

l Words

l Expressions

l Operators

l Functions

However, due to the specifics of how repositories operate, there are some limitations on what you can include in
your queries and nuances that affect performance. These peculiarities have to do with the following:

l Use of punctuation in field values

l Whether "equals" or "contains" semantics are used

Punctuation and Other Non-Alphanumeric Characters
Some characters, such as curly braces and the hyphen, are treated in a special way by the repository indexing
engine. A query that includes these characters is automatically transformed during an indexed search, even
though the query itself may be perfectly valid. The indexing engine splits the query into substrings at these
characters and uses the substrings to make the clauses of an AND expression.
As a result, these characters are effectively removed from the index. This affects how well irrelevant data is
filtered out and, consequently, how fast queries are evaluated. The following is a list of such characters:

InTrust 11.5 SDKReference
RepositoryServicesAPI 17

https://support.quest.com/technical-documents/intrust/11.5/customization-kit
https://support.quest.com/technical-documents/intrust/11.5/customization-kit/language-reference/rel/words
https://support.quest.com/technical-documents/intrust/11.5/customization-kit/language-reference/rel/expressions
https://support.quest.com/technical-documents/intrust/11.5/customization-kit/language-reference/rel/operators
https://support.quest.com/technical-documents/intrust/11.5/customization-kit/language-reference/rel/functions

- \ & { } () [] < > , ! ? .
You can deal with this limitation in the following ways:

What you can do Comments

Do nothing; leave
the characters
where they are.

Your query will be transformed automatically so that the indexing engine filters out as
much of the repository as it can before running the search. However, punctuation
characters are not part of the index, so the expected values may not be the only ones
that match. A lot of similar but irrelevant matches can be present in the results.
How fast your query runs and how relevant its results are depends on how many
distinctive alphanumeric substrings it contains besides the punctuation:

l If your query is made up of strings that have low chances of occurrence, your
search will be fast and the results will be mostly relevant.

l If your query contains strings that occur all the time, your search will be slow
and the results will not be very useful.

Pick different fields
to match by; ones
that can contain only
alphanumeric
characters.

You can achieve maximum search performance, but it can be difficult or impossible to
find equally relevant fields.

"Equals" Versus "Contains"
In a repository search, a query that uses "equals" semantics (the striequ REL function) is always evaluated
faster than a similar query using "contains" semantics (the substr REL function). Queries with "does not equal"
semantics are even slower.
Regular expressions (the regexp REL function) are slowest.

Searchable Event and Record Fields
This topic lists the field names that you can use in your REL queries when you search for events or records in a
repository using the IObservable and IObserver interfaces.
The results of a search are polymorphic and can be cast to events or records as necessary. In addition, you can
treat the contents of the repository as either events or records and use either event field names or record field
names. However, you cannot mix event and record field names in the same query.
For example, if your repository contains custom records with filled-in insertion strings, it is convenient to treat the
records as events for easy access to insertion string contents (see Insertion Strings below).

Event Fields

Field Details

__AnyField Look for the specified pattern in all fields.

Category A symbolic representation of the event category. Search pattern example:
"(\\b|\\W|^)security"

InTrust 11.5 SDKReference
RepositoryServicesAPI 18

https://support.quest.com/technical-documents/intrust/11.5/customization-kit/language-reference/rel

Field Details

Computer The computer where the event was logged.

Environment Internally, InTrust predefines two environment ID values:

l 8EAF6C85-D1FF-4CFD-9D90-64944C8E6B3E
Unix Network Environment

l 9E442BEE-EAC2-4D79-9013-053FB225CFD0
Microsoft Windows Network Environment

Custom environment IDs can also occur.

EventID

PlatformID Internally, InTrust predefines the following platform ID values:

l 500
Microsoft Windows

l 610
Solaris

l 620
HP-UX

l 630
Linux

l 640
IBM AIX

Custom platform IDs can also occur.

Source The subsystem or service that the event is related to. For example, in forwarded Syslog
events the source is "Syslog Device".

SourceComputer The computer where the event originated; this can be different from the computer where it
was logged.

SourceDomain The domain of the computer where the event originated, if applicable.

Time The timestamp in the event.
Tip: Use filtering by date in your REL queries whenever the date range is known. This
speeds up searches considerably.

Type The predefined types are Information,Warning, Error, Failure Audit and Success Audit.

UserDomain The domain of the user who produced the event.

UserName The name of the user who produced the event.

VersionMajor The major operating system version number of the computer on which the event occurred.
For example, the major version of Windows 7 is 6.

VersionMinor The minor operating system version number of the computer on which the event occurred.

InTrust 11.5 SDKReference
RepositoryServicesAPI 19

Field Details

For example, the minor version of Windows 7 is 1.

What A brief description of what the event is about.

Where The computer where the event happened (had effect).

Where_From The name or IP address of the computer from which the activity (such as a logon or
configuration change) was performed. This is not necessarily the same computer as the
one where the activity had effect.

Who The plain user name of the account that caused the event.

WhoDomain The Active Directory domain of the account that caused the event, where applicable.

Whom The user account that was affected by the event, where applicable.

Insertion Strings
To look in insertion strings and resolved insertion strings, respectively, use the following field names:

l InsertionStringN

l ResolvedInsertionStringN

where N is the number of the string.
Examples of REL expressions:

in(InsertionString10, "rei", "(\\b|\\W|^)is1608133597");

striequ(ResolvedInsertionString2,"is");

Record Fields
Most of the fields defined in the record data structures (see Repository Record Data Structures) can be used in
search queries:

l directory_tag_1

l directory_tag_2

l directory_tag_3

l directory_tag_4

l field_1

l field_3

l field_4

l file_tag_1

l file_tag_2

l file_tag_3

l file_tag_4

l formatting_record_field

InTrust 11.5 SDKReference
RepositoryServicesAPI 20

l string_field_1

l string_field_2

l string_field_3

l string_field_4

l string_field_5

Note that some fields contain integers and others strings.
Examples of REL expressions:

field_1 = 123;

striequ(directory_tag_1,"blue");

striequ(formatting_record_field,"green");

striequ(string_field_1,"cerise");

file_tag_1 = 5385;

Writing Records
After you have obtained the IRepositoryRecordInserter or IRepositoryRecordInserter2 interface (as described in
Getting and Putting Data), you need to generate the data structures that you are going to write. Before you begin
writing, make sure you understand the record data structures (see Repository Record Data Structures) and are
able to construct them efficiently. The repository API provides two ways to write records: you can use either
complete record structures or arrays of the smaller structures from which records are made up. The next steps
depend on this choice.

Approach 1: Writing Whole Record Structures
In this approach, you combine your newly generated tags and contents structures into complete record
structures, put the records in an array and supply the array to the PutRecords method of the
IRepositoryRecordInserter interface.

Approach 2: Splitting Records for Writing
This approach requires that you plan in advance which of your record fields best to use as tags. This will enable
you to create records with shared tags and different contents. The IRepositoryRecordInserterLight interface
stores the tags that you want to share among your records. To get this interface, call the BindFields method of
the IRepositoryRecordInserter interface you have obtained. This method accepts your tags as a parameter.
After that, supply the contents parts of your records to the IRepositoryRecordInserterLight interface; it will form
complete record structures and perform the writing.

Example (C#)
using System;

InTrust 11.5 SDKReference
RepositoryServicesAPI 21

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.Runtime.InteropServices;

using REPOSITORYSERVICESLib;

using REPOSITORYRECORDINSERTERLib;

using INTRUSTENVIRONMENTLib;

namespace RepositoryRecordInserterTest2

{

class Program

{
public static uint ToUnixTime(DateTime date)

{

var epoch = new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc);

return (uint)Convert.ToInt64((date.ToUniversalTime() -
epoch).TotalSeconds);

}

public static DateTime UnixTimestampToDateTime(uint unixTime)

{

DateTime unixStart = new DateTime
(1970, 1, 1, 0, 0, 0, 0, System.DateTimeKind.Utc);

long unixTimeStampInTicks = (long)(unixTime * TimeSpan.TicksPerSecond);

return new DateTime(unixStart.Ticks + unixTimeStampInTicks);

}

class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver

{

private AutoResetEvent m_waitHandler;

public int event_count;

public REPOSITORYSERVICESLib.ICookie m_cookie;

InTrust 11.5 SDKReference
RepositoryServicesAPI 22

public MyObserver(AutoResetEvent x)

{

m_waitHandler = x;

event_count = 0;

}

public void OnDone()

{

Console.WriteLine("Search done");

m_waitHandler.Set();

}

public void OnError(int hr, string description)

{

Console.WriteLine("Search error - {0}", description);

m_waitHandler.Set();

}

public void OnNext(object data)

{

if (data != null)

{

IBulkRecord bulk_event = (data as IBulkRecord);

List<record> records = bulk_event.GetRecords().Cast<record>
().ToList<record>();

foreach (record my_record in records)

{

Console.WriteLine("next record");

Console.WriteLine(" time - {0}", UnixTimestampToDateTime
(my_record.record_contents.gmt_time));

foreach (named_string my_named_string in my_record.record_
contents.named_fields)

{

Console.WriteLine(" key - {0}, value - {1}", my_named_
string.name, my_named_string.value);

InTrust 11.5 SDKReference
RepositoryServicesAPI 23

}

++event_count;

}

}

System.Runtime.InteropServices.Marshal.FinalReleaseComObject(data);

}

public void Dispose()

{

m_cookie.Stop();

}

}

static tags construct_sharding_fields(string log)

{

// For details about using sharding keys, see the "Repository Record Data
Structures" topic

tags tg = new tags();

tg.directory_tag_1 = "ShardingLevel1";

tg.directory_tag_2 = "ShardingLevel2";

tg.directory_tag_3 = "{A9E5C7A2-5C01-41B7-9D36-E562DFDDEFA9}"; // Sharding
level 3 must be a GUID

tg.directory_tag_4 = log;

tg.file_tag_1 = 0;

tg.file_tag_2 = 500;

tg.file_tag_3 = 0;

tg.file_tag_4 = 0;

return tg;

}

static contents construct_contents_fields(insertion_string[] insertion_
strings, named_string[] named_fields, string formatting_record_field)

{

contents ct = new contents();

ct.string_field_1 = "string_field_1_value";

InTrust 11.5 SDKReference
RepositoryServicesAPI 24

ct.string_field_2 = "string_field_2_value";

ct.string_field_3 = "string_field_3_value";

ct.string_field_4 = "string_field_4_value";

ct.string_field_5 = "string_field_5_value";

ct.formatting_record_field = formatting_record_field;

ct.gmt_time = ToUnixTime(DateTime.Now);

ct.field_1 = 300;

ct.field_2 = 50;

ct.field_3 = 2;

ct.field_4 = 3;

ct.strings = insertion_strings;

ct.named_fields = named_fields;

return ct;

}

static record construct_record(uint index, string logname, insertion_string
[] insertion_strings, named_string[] named_fields, string description)

{

return new record() {

record_path = construct_sharding_fields(logname),

record_contents = construct_contents_fields(insertion_strings, named_
fields, description)

};

}

static void insert_records(IRepositoryRecordInserter pInserter)

{

DateTime start = DateTime.Now;

List<record> records = new List<record>();

for (uint i = 0; i != 16000; ++i)

{

insertion_string[] insertion_strings =

InTrust 11.5 SDKReference
RepositoryServicesAPI 25

{

new insertion_string() { index = 1, value = "My" },

new insertion_string() { index = 2, value = "String
value 2" },

new insertion_string() { index = 6, value = "Event" },

new insertion_string() { index = 7, value = "String value 7" }

};

named_string[] named_fields =

{

new named_string()
{ name = "FieldName1", value = "FieldValue1"},

new named_string()
{ name = "FieldName2", value = "FieldValue2"},

new named_string()
{ name = "FieldName3", value = "FieldValue3"},

new named_string()
{ name = "FieldName4", value = "FieldValue4"},

new named_string()
{ name = "FieldName5", value = "FieldValue5"},

};

records.Add(construct_record(i, "Log1", insertion_strings, named_
fields, "This %1 %6 description"));

}

pInserter.PutRecords(records.ToArray());

pInserter.Commit();

}

static void insert_records_on_server(IRepositoryRecordInserter2 pInserter)

{

DateTime start = DateTime.Now;

List<record> records = new List<record>();

for (uint i = 0; i != 16000; ++i)

{

insertion_string[] insertion_strings =

{

InTrust 11.5 SDKReference
RepositoryServicesAPI 26

new insertion_string() { index = 1, value = "My" },

new insertion_string() { index = 2, value = "String
value 2" },

new insertion_string() { index = 6, value = "Event" },

new insertion_string() { index = 7, value = "String value 7" }

};

named_string[] named_fields =

{

new named_string()
{ name = "FieldName1", value = "FieldValue1"},

new named_string()
{ name = "FieldName2", value = "FieldValue2"},

new named_string()
{ name = "FieldName3", value = "FieldValue3"},

new named_string()
{ name = "FieldName4", value = "FieldValue4"},

new named_string()
{ name = "FieldName5", value = "FieldValue5"},

};

records.Add(construct_record(i, "Log1", insertion_strings, named_
fields, "This %1 %6 description"));

}

pInserter.PutRecords(records.ToArray());

pInserter.Commit2(ToServerRepositoryCommitType);

}

static tags construct_naive_sharding_fields(string log)

{

// For details about using sharding keys, see the "Repository Record Data
Structures" topic

tags tg = new tags();

tg.directory_tag_1 = "ShardingLevel1";

tg.directory_tag_2 = "ShardingLevel2";

tg.directory_tag_3 = "{A9E5C7A2-5C01-41B7-9D36-E562DFDDEFA9}"; // Sharding
level 3 must be a GUID

tg.directory_tag_4 = log; // ShardingLevel4

InTrust 11.5 SDKReference
RepositoryServicesAPI 27

return tg;

}

static contents construct_naive_contents_fields(named_string[] named_fields)

{

contents ct = new contents();

ct.gmt_time = ToUnixTime(DateTime.Now);

ct.named_fields = named_fields;

return ct;

}

static record construct_naive_record(uint index, string logname, named_string
[] named_fields)

{

return new record()

{

record_path = construct_naive_sharding_fields(logname),

record_contents = construct_naive_contents_fields(named_fields)

};

}

static void insert_naive_records(IRepositoryRecordInserter pInserter)

{

DateTime start = DateTime.Now;

List<record> records = new List<record>();

for (uint i = 0; i != 16000; ++i)

{

named_string[] named_fields =

{

new named_string()
{ name = "FieldName1", value = "FieldValue1"},

new named_string()
{ name = "FieldName2", value = "FieldValue2"},

new named_string()
{ name = "FieldName3", value = "FieldValue3"},

InTrust 11.5 SDKReference
RepositoryServicesAPI 28

new named_string()
{ name = "FieldName4", value = "FieldValue4"},

new named_string()
{ name = "FieldName5", value = "FieldValue5"},

};

records.Add(construct_naive_record(i, "Log1", named_fields));

}

pInserter.PutRecords(records.ToArray());

pInserter.Commit();

}

static void search_records(IInTrustRepository intrust_
repository, string query)

{

IObservable observable = intrust_repository.Searcher.Search(query);

AutoResetEvent waitHandler = new AutoResetEvent(false);

MyObserver observer = new MyObserver(waitHandler);

observable.Subscribe(observer, out observer.m_cookie);

waitHandler.WaitOne();

}

static void records_example(IInTrustRepository intrust_repository)

{

IRepositoryRecordInserter pInserter = intrust_repository.Inserter;

// Insert records with strictly key-value data directly to the repository

insert_naive_records(pInserter);

search_records(intrust_repository, "(in(__AnyField, \"rei\", \"
(\\\\b|\\\\W|^)FieldValue5\"));");

// Insert records directly to the repository

insert_records(pInserter);

search_records(intrust_repository, "(in(__AnyField, \"rei\", \"
(\\\\b|\\\\W|^)String value 7\"));"

// Insert records by queuing them on the server

insert_records_on_server(pInserter as IRepositoryRecordInserter2);

InTrust 11.5 SDKReference
RepositoryServicesAPI 29

System.Threading.ThreadSleep(60000);// We need to wait, because there will
be a delay up to a minute before the event arrives in the repository

search_records(intrust_repository, "(in(__AnyField, \"rei\", \"
(\\\\b|\\\\W|^)String value 7\"));"

}

static void Main(string[] args)

{

if (args.Length != 2)

{

Console.WriteLine("Invalid argument count.\n");

Console.WriteLine("\tRepositoryRecordInserterTest.exe <InTrust Server
Binding String> <Repository Name>\n");

return;

}

try

{

InTrustEnvironmentintrust_environment = new InTrustEnvironment();

IInTrustOrganization3 intrust_organization = intrust_
environment.ConnectToServer(args[0]).Organization as IInTrustOrganization3;

IInTrustRepository3 intrust_repository = intrust_
organization.Repositories2.Cast<IInTrustRepository3>().Where(x => x.Name == args
[1]).First();

records_example(intrust_repository);

}

catch (Exception e)

{

Console.WriteLine("Error : {0}", e.ToString());

}

}

}

}

InTrust 11.5 SDKReference
RepositoryServicesAPI 30

Writing Events
After you have obtained the IRepositoryRecordInserter interface (as described in Getting and Putting Data), take
the following steps:

1. Generate valid event_with_extensions structure instances; this structure is described in Event Record
Data Structures.

2. Through combined use of the IEventToRecordFormatter and IRepositoryRecordInserter interfaces,
supply your newly generated events for writing.
For that, use the Format method of the IEventToRecordFormatter interface to wrap your events in
IBulkEventWithReadExtensions, and pass the resulting wrapper interface as a parameter to the
PutRecords2 method of the IRepositoryRecordInserter interface.

Sort Order for Writing
When you write events in batches, the events must be sorted by gmt_time, but not necessarily throughout the
entire batch. The important thing is to sort those events where the following are the same: domain, computer, log
name. That is the scope where you need to sort. For example, if your event batch contains 1000 events from
1000 computers, no sorting is necessary. But if it is 1000 events from two computers, you need to do two sorts.

Out-of-Order Writing
Submitting events out of order is possible, but there is a serious caveat. Whenever the timestamp of your event
is less than that of the event you submitted last, you must use the Commit method of your inserter interface
before you write the “flashback” event. Here are some implications of this:

l Events that are newer than the last-submitted event and older than that event should not be put in the
same batch. Otherwise, timestamps will not be interpreted correctly. For example, searching within a
specific time range will not return events that match but were written out of order between commits.

l A huge amount of repository files (caused by frequent commits) is bad for performance. Batch your “old”
events as much as possible.

Repository Record Data Structures
A record is a chunk of data that is (or has been prepared for being) stored in a repository and processed by
repository searches. A record is made up of two parts: tags and contents. The tags indicate where in the file
system the file with this record is located. At the same time, the tags double as record field values. The contents
do not do anything other than contain record field values.
When you create records, it is important which fields you use as tags and which you use as contents. By
handling tags rationally you can help speed up searches on the data you are storing and minimize disk usage
by your repository contents.
When you search for records, it doesn't matter in search queries whether a value is used as a tag or as contents.
For recommendations on efficiently organizing data fields in records, see Recommendations on Setting
Tags below.

InTrust 11.5 SDKReference
RepositoryServicesAPI 31

tags
struct tags

{

 BSTR directory_tag_1;

 BSTR directory_tag_2;

 BSTR directory_tag_3; // must specify a GUID

 BSTR directory_tag_4;

 unsigned file_tag_1;

 unsigned file_tag_2;

 unsigned file_tag_3;

 unsigned file_tag_4;

};

Contains the values of eight of the record's fields. In addition to carrying record data, this combination of fields is
used for identifying the path to a folder and the name of a file in the repository tree. Repository trees are four
levels deep, and files are located only at the deepest level.
The directory tags specify the four nesting levels. The third level must be a string representation of a GUID;
InTrust verifies the format. This requirement is due to the implementation of the repository services. The GUID is
used for identifying event-providing data sources, and each data source type has a particular known GUID. You
may want to come up with your own set of special-purpose GUIDs for your specific tasks (for example,
hierarchical organization).
The file tags specify the four parts of the file's base name. A file represented by this structure contains one or
more entries represented by contents and contents2 structures. If the number of entries per file hits a limit, the
same base name is used for creating a new file, and the entries are continued in it.
In a simplified way, the location of a repository file in the file system hierarchy can be represented as follows:

repository_root
└ directory_tag_1
 └ directory_tag_2
 └ directory_tag_3
 └ directory_tag_4
└ file_tag_1_file_tag_2_ file_tag_3_file_tag_4_InTrust_internal_tags

Because tags correlate with the file system, make sure their values do not contain characters that are disallowed
in file and directory names.

contents
struct contents

{

 unsigned field_1;

 unsigned field_2;

InTrust 11.5 SDKReference
RepositoryServicesAPI 32

 short field_3;

 short field_4;

 DATE gmt_time;

 BSTR string_field_1;

 BSTR string_field_2;

 BSTR string_field_3;

 BSTR string_field_4;

 BSTR string_field_5;

 SAFEARRAY(struct insertion_string) strings;

 SAFEARRAY(struct named_string) named_fields;

 BSTR formatting_record_field;

};

Used for writing records to the reposiotry and contains the remaining values of the record fields in addition to
those specified by the tags structure. This structure is physically represented by an entry in a repository file.

NOTE: The InTrust repository is known to easily handle up to 300 strings per record. Higher numbers of
strings have not been tested and cannot be recommended.
As a best practice, make sure that your string mapping is consistent; that is, the same string numbers
should have the same meanings across your records. This is beneficial for repository searches.

CAUTION: At this time, the field_2 field is not indexed and cannot be processed in repository
searches. Writing useful data to this field is currently not recommended.

contents2
struct contents2

{

 unsigned field_1;

 unsigned field_2;

 short field_3;

 short field_4;

 DATE gmt_time;

 BSTR string_field_1;

 BSTR string_field_2;

 BSTR string_field_3;

 BSTR string_field_4;

 BSTR string_field_5;

InTrust 11.5 SDKReference
RepositoryServicesAPI 33

 SAFEARRAY(struct insertion_string) strings;

 SAFEARRAY(struct named_string) native_named_fields;

 SAFEARRAY(struct named_string) resolved_named_fields;

 BSTR formatting_record_field;

};

Used in results of repository searches and contains the remaining values of the record fields in addition to those
specified by the tags structure. This structure is physically represented by an entry in a repository file.
Unlike the contents structure, the contents2 structure contains two distinct arrays of named_string structures.
This is because the data for the native_named_fields field is not known during record writing. It is only
available to repository searches.

NOTE: The InTrust repository is known to easily handle up to 300 strings per record. Higher numbers of
strings have not been tested and cannot be recommended.
As a best practice, make sure that your string mapping is consistent; that is, the same string numbers
should have the same meanings across your records. This is beneficial for repository searches.

CAUTION: At this time, the field_2 field is not indexed and cannot be processed in repository
searches. Writing useful data to this field is currently not recommended.

record
struct record

{

 struct tags record_path;

 struct contents record_contents;

};

Combines the path-specifying (tags) and complementary (contents) parts of a record into a single structure.
This type of record is used for writing to the repository.

record2
struct record2

{

 struct tags record_path;

 struct contents2 record_contents;

};

Combines the path-specifying (tags) and complementary (contents2) parts of a record into a single structure.
This type of record is returned by repository searches.

InTrust 11.5 SDKReference
RepositoryServicesAPI 34

Recommendations on Setting Tags
Organize your record tags according to the likelihood of the value being the same in a given collection of
records. That is, directory_tag_1 should contain the value that is the same in most of the records you are about
to generate. Conversely, directory_tag_4 should contain the value that the fewest records have in common.
Also note that the best way to map the tags (and thereby define how the records will be stored physically) is to
make them correspond to something that falls into a meaningful hierarchy. For example, all your records might
be Security log events, but it still doesn't make sense to make the log name the topmost level. You would do
better to tag map directory_tag_1,..., directory_tag_4 to domain, computer, data source and log name,
respectively; even though there is more value variation at the top levels this way.
A repository can store heterogeneous objects, but you need a way to tell their types apart. This requires a
generic ID field, and directory_tag_3 is good for the purpose. If you come up with a GUID for each object type
(file system, computer, Active Directory object and so on), you will not confuse them. A further improvement is to
design a hierarchy of IDs.

Event Record Data Structures
These data structures are alternatives to generic repository record data structures. Use event records for
convenience when your records represent log events. For details about the meaning of the fields used in event
records, see Event Record Data Structures below.
The primary data structure is base_event. There are also two structures that extend it: event_with_extensions
and event_with_read_extensions. For details about the use of these data structures, see Getting Events and
Writing Events.

base_event
struct base_event

{

 BSTR environment;

 BSTR gathering_domain;

 BSTR gathering_computer;

 BSTR datasource_type;

 BSTR gathered_event_log;

 BSTR user_name;

 BSTR user_domain;

 BSTR source_name;

 BSTR computer_name;

 BSTR string_category;

 BSTR description_template;

 SAFEARRAY(struct insertion_string) strings;

InTrust 11.5 SDKReference
RepositoryServicesAPI 35

 SAFEARRAY(unsigned char) binary_data;

 unsigned time_gmt;

 unsigned time_generated;

 long time_bias;

 unsigned record_key;

 unsigned event_id;

 unsigned computer_type;

 unsigned platform_id;

 short version_major;

 short version_minor;

 short event_type;

 short numeric_category;

 unsigned padding000;

};

CAUTION: The binary_data field is present only for compatibility with Windows events. This data
cannot be indexed or processed in repository searches. Writing useful data to this field is not
recommended.

event_with_read_extensions
struct event_with_read_extensions

{

 struct base_event original_event;

 BSTR formatted_description;

 SAFEARRAY(struct augmented_insertion_string) resolved_strings;

 SAFEARRAY(struct named_string) named_strings;

};

named_string
struct named_string
{
 BSTR name;
 BSTR value;
};

IMPORTANT: In the string names that you define, use only alphanumeric ASCII characters and the
underscore (_) character.

InTrust 11.5 SDKReference
RepositoryServicesAPI 36

insertion_string
struct insertion_string
{
 BSTR value;
 int index;
 int padding;
};

A regular insertion string.

augmented_insertion_string
struct augmented_insertion_string
{
 int source_index;
 int result_index;
 BSTR value;
};

These are normalized parameters that are not originally present in native events. For a description of these
parameters, see the Filter Parameters in Repository Viewer topic.

NOTE: The source_index field holds the index of the original insertion string. The result_index field
holds the index of the resulting insertion string after the original has been resolved.

event_with_extensions
struct event_with_extensions

{

 struct base_event original_event;

 SAFEARRAY(struct resolved_string) resolved_strings;

};

NOTE: The InTrust repository is known to easily handle up to 300 insertion strings per event. Higher
numbers of strings have not been tested and cannot be recommended.
As a best practice, make sure that your insertion string mapping is consistent; that is, the same insertion
string numbers should have the same meanings across your events. This is beneficial for repository
searches.

event_with_extensions2
struct event_with_extensions2

{

 struct base_event original_event;

 SAFEARRAY(struct resolved_string) resolved_strings;

InTrust 11.5 SDKReference
RepositoryServicesAPI 37

https://support.quest.com/technical-documents/intrust/11.5/searching-for-events-in-repository-viewer/filter-parameters-in-repository-viewer

 SAFEARRAY(struct named_string) named_fields;

};

resolved_string
struct resolved_string
{
 BSTR value;
 int insertion_string_index;
 resolve_type insertion_string_resolve_type;
};

typedef enum
{
 custom = 0,
 parameter,
 ad_object_guid_to_distinguished_name,
 user_sid_to_user_name,
 group_policy_guid_to_group_policy_object_name,
 device_name_to_path
} resolve_type;

The resolve_type enumeration specifies what kind of resolution is supposed to have taken place to get the
resulting value. The insertion string resolution mechanism in InTrust is fairly complex, but for the purposes of the
repository service API it is enough to follow this example:

insertion_string[] insertion_strings =
{

new insertion_string() { index = 1, padding = 0, value = "original
string" },

new insertion_string() { index = 2, padding = 0, value = "%%2308" },
// event parameter

new insertion_string() { index = 3, padding = 0, value = "{9F29FD37-
3CD4-4179-99F1-A6341DCC4EB3}" }, // ad object guid (user guid)

new insertion_string() { index = 4, padding = 0, value = "S-1-1-0" },
// user sid

new insertion_string() { index = 5, padding = 0, value = "{29EDB5C5-
B2C1-4001-9C96-EE51A6A7CAC3}" }, // ad object guid (group policy guid)

new insertion_string() { index = 6, padding = 0, value =
"\\Device\\HarddiskVolume1\\SomeFolder\\SomeFile.txt" } };
resolved_string[] resolved_insertion_strings =
{

new resolved_string() {insertion_string_index = 2, insertion_string_resolve_
type = resolve_type.parameter, value = "The user has not been granted the
requested logon type at this machine."},

new resolved_string() {insertion_string_index = 3, insertion_string_resolve_
type = resolve_type.ad_object_guid_to_distinguished_name, value =
"CN=user1,DC=aa,DC=com"},

new resolved_string() {insertion_string_index = 4, insertion_string_resolve_
type = resolve_type.user_sid_to_user_name, value = "EDM\\User2"},

new resolved_string() {insertion_string_index = 5, insertion_string_resolve_
type = resolve_type.ad_object_guid_to_distinguished_name, value = "CN={B96B9D14-

InTrust 11.5 SDKReference
RepositoryServicesAPI 38

E2A4-47ae-8ACA-CB0460089616},DC=aa,DC=com"},
new resolved_string() {insertion_string_index = 5, insertion_string_resolve_

type = resolve_type.group_policy_guid_to_group_policy_object_name, value =
"MyGroupPolicyObject"},

new resolved_string() {insertion_string_index = 6, insertion_string_resolve_
type = resolve_type.ad_object_guid_to_distinguished_name, value =
"D:\\SomeFolder\\SomeFile.txt"},
};

Note that in the case of resolving a group policy GUID to a group policy name you need to provide two
resolved_string instances.

Creating and Removing Repositories
The methods for creating and removing production InTrust repositories (Add and Remove) are available in the
IInTrustRepositoryCollection2 interface, which provides access to all repositories in a particular InTrust
organization.

CAUTION: For these operations to succeed, the account you are using must be an InTrust
organization administrator. To configure this privilege for the account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

Calling the Addmethod of IInTrustRepositoryCollection2 is not enough to create a repository. After you have
made the call and obtained the IInTrustRepository3 interface, you need to complete the configuration of its
options and call its Commit method. This will complete the creation of the repository.
For details about obtaining a collection of repositories, see Connecting to a Repository.
Instead of a production repository (which is registered with InTrust, managed by an InTrust server and has an
entry in the InTrust configuration), you may want to create an idle repository (which has only the raw repository
file structure). For that, use the IIdleRepositoryFactory interface, which constructs IIdleRepository interfaces.

Working with Repository Properties
Repositories have very flexible configuration, where some properties are predefined and others can be custom-
defined. Access to repository configuration is provided through the IInTrustRepository3 interface, which has
getter and setter methods for supported property groupings. The following groupings are available at this time:

l Forwarding properties
These properties are used by the event forwarding engine in InTrust (see Integration into SIEM Solutions
Through Event Forwarding). For details about these properties, see IForwardingSettings.

InTrust 11.5 SDKReference
RepositoryServicesAPI 39

https://support.quest.com/technical-documents/intrust/11.5/integration-into-siem-solutions-through-event-forwarding/
https://support.quest.com/technical-documents/intrust/11.5/integration-into-siem-solutions-through-event-forwarding/

l Indexing properties
These properties are the configuration of the repository indexing engine in InTrust (see Repository
Indexing for Advanced Search Capabilities). For details about these properties, see IIndexingSettings.

l Custom attributes
These are arbitrary properties that you can set as necessary for your own purposes. For details, see
Using Custom Attributes.

Using Custom Attributes
You can associate custom attributes with InTrust repositories. They are available through the CustomAttributes
methods of an IInTrustRepository3 interface. They use the IProperty interface and are accessed collectively
through IPropertyCollection interfaces.
There are no custom attribute guidelines; what custom attributes you add and how you use them is up to you.
However, note that the following limits are set for the generic IProperty interface used by custom attributes:

l Name: 64 characters

l If you set a string of the BSTR type for the value: 1024 characters

It is also recommended that you keep the number of custom attributes low: tens rather than hundreds.
For details about the generic property interfaces used for custom attributes, see IProperty and
IPropertyCollection.

InTrust 11.5 SDKReference
RepositoryServicesAPI 40

https://support.quest.com/technical-documents/intrust/11.5/repository-indexing-for-advanced-search-capabilities/
https://support.quest.com/technical-documents/intrust/11.5/repository-indexing-for-advanced-search-capabilities/

Example (C#)
/* Connect to repository */
IInTrustEnvironment2 env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServerWithCredentials("8.8.8.8", @"domain\user_
name", "password");
IInTrustOrganization org = server.Organization as IInTrustOrganization3;
IInTrustRepository3 rep = org.Repositories2.Item("Default InTrust Audit Repository");

/* Get collection of custom attributes */
IPropertyCollection props = rep.CustomAttributes;

/* Set custom attributes */
props.Set("NumberAttr", 12);
props.Set("StringAttr", "Initial status");
rep.Commit();

/* Get attribute by name */
IProperty stringAttr = props.Item("StringAttr");
/* Get value */
System.Console.WriteLine("String attribute value is {0}", stringAttr.PropertyValue);
/* Set new value */
stringAttr.PropertyValue = "Updated status";
rep.Commit();

/* Enumerate all attributes */
foreach (IProperty prop in props)
{

System.Console.WriteLine("Attibute : {0}, Value : {1}", prop.PropertyName,
prop.PropertyValue);
}

/* Delete attribute */
props.Remove("NumberAttr");
(props as IADCCommitable).Commit(); /* Commit only the custom properties without the
other repository fields */

InTrust 11.5 SDKReference
RepositoryServicesAPI 41

Log Knowledge Base API
The log knowledge base contains settings for transforming data from original log formats to the repository
format. The API does not work with predefined log definitions, which are completely out of its scope; it is
designed only for user-defined logs.
To work with the log knowledge base, use the following interfaces:

l IInTrustEventory

l IInTrustEventoryItemCollection

l IInTrustEventoryItem

To begin working with the log knowledge base, get a collection of known organizations (Organizations method
of the IInTrustEnvironment interface) and pick the necessary one. This involves working with the
IInTrustOrganizationCollection interface. Organizations are discovered by an Active Directory query.
The IInTrustOrganization3 that you get has the Eventory method, which provides access to the organization-
wide log knowledge base.
For details about the format of rules for matching log events and mapping fields, see Log Transformation
Rule Format.

CAUTION: If you modify the knowledge base for a specific log, this will invalidate all existing index
data for that log in all repositories that contain the log. Indexed searches will no longer find this log’s
events gathered prior to the modification. Data gathered after the modification will be indexed
correctly and be searchable.
If the unavailability of old data is not a problem for you, you don't have to do anything. Otherwise,
you will need to recreate valid indexes for all repositories that contain the log. However, it is not
feasible to recreate an index for a large production repository without taking it offline for a long time.
If you need to experiment with log knowledge base editing, use a dedicated test organization and
small repositories, which can be reindexed quickly.
For details about repository reindexing, see Recreating the Index.

Example
static void GetFullEventory()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
string eventory = ev.Eventory;
Console.WriteLine("Full eventory : " + eventory);

}
static void AddNewLog()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;

InTrust 11.5 SDKReference
Log Knowledge Base API 42

https://support.quest.com/technical-documents/intrust/11.5/repository-indexing-for-advanced-search-capabilities/recreating-the-index

IInTrustEventoryItem log = logs.Add("NewLog",
@"<FieldInfo>

 <Fields>
 <Field FieldName = ""New_field"" DisplayName = ""NewField"" IsIndexed
= ""true""></Field>
 </Fields>
 <EventRules>
 <Event EventID = ""701"">
 <Field Name = ""Who"" Index = ""11""></Field>
 <Field Name = ""What"" Index = ""12""></Field>
 <Field Name = ""Object_Type"" Index = ""13""></Field>
 <Field Name = ""Object_Name"" Index = ""14""></Field>
 </Event>
 </EventRules>
 </FieldInfo>");
}
static void GetLogAndChangeRule()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;
IInTrustEventoryItem log = logs.Item("NewLog");
log.Rules = @"<FieldInfo>

 <Fields>
 <Field FieldName = ""New_field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
 </Fields>
 <EventRules>
 <Event EventID = ""701"">
 <Field Name = ""Who"" Index = ""11""></Field>
 </Event>
 </FieldInfo>";
}
static void EnumLogs()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;
foreach (IInTrustEventoryItem cur_log in logs)
{

string log_name = cur_log.Name;
string log_rule = cur_log.Rules;
Console.WriteLine("Log name : " + log_name);
Console.WriteLine("Log rule : " + log_rule);

}
}
static void RemoveLog()
{

IInTrustEnvironment env = new InTrustEnvironment();

InTrust 11.5 SDKReference
Log Knowledge Base API 43

IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;
logs.Remove("NewLog");

}
static void AddNewDataSource()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection dataSources = ev.DataSources;
IInTrustEventoryItem dataSource = dataSources.Add("{10000000-0000-0000-0000-

000000000001}",@"<FieldInfo>
 <Fields>
 <Field FieldName = ""New_field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
 </Fields>
 <EventRules>
 <Event EventID = ""701"">
 <Field Name = ""Who"" Index = ""11""></Field>
 <Field Name = ""What"" Index = ""12""></Field>
 <Field Name = ""Object_Type"" Index = ""13""></Field>
 <Field Name = ""Object_Name"" Index = ""14""></Field>
 </Event>
 </EventRules>
</FieldInfo>");
}
static void GetDataSourceAndChangeRule()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection dataSources = ev.DataSources;
IInTrustEventoryItem dataSource = dataSources.Item("{10000000-0000-0000-0000-

000000000001}");
dataSource.Rules = @"<FieldInfo>

 <Fields>
 <Field FieldName = ""New_field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
 </Fields>
 <EventRules>
 <Event EventID = ""701"">
 <Field Name = ""Who"" Index = ""11""></Field>
 </Event>
 </FieldInfo>";
}
static void EnumDataSources()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");

InTrust 11.5 SDKReference
Log Knowledge Base API 44

IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection dataSources = ev.DataSources;
foreach (IInTrustEventoryItem curDataSource in dataSources)
{

string ds_name = curDataSource.Name;
string ds_rule = curDataSource.Rules;
Console.WriteLine("Data source name : " + ds_name);
Console.WriteLine("Data source rule : " + ds_rule);

}
}
static void RemoveDataSources()
{

IInTrustEnvironment env = new InTrustEnvironment();
IInTrustServer server = env.ConnectToServer("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection dataSources = ev.DataSources;
dataSources.Remove("{10000000-0000-0000-0000-000000000001}");

}

NOTE: In the functions that handle data sources, the data source name must be in GUID format; for
example:

{10000000-0000-0000-0000-000000000001}

Log Transformation Rule Format
Log transformation rules are defined as XML. The structure of a rule is shown in the example below, which
contains all of the tags and parameters available.

<FieldInfo>
 <Fields>
 <Field FieldName = "TTF" DisplayName = "TTest Field" IsIndexed = "true"></Field>
 <Field FieldName = "TTF2" DisplayName = "TTest Field 2" IsIndexed =
"true"></Field>
 </Fields>
 <EventRules>
 <Event EventID = "701">
 <Field Name = "TTF" Index = "1"></Field>
 <Field Name = "TTF2" Index = "3"></Field>
 </Event>
 </EventRules>
</FieldInfo>

Log events are matched by Event ID, and the Field tags specify how the original event fields are mapped to
repository record fields. The Index parameter specifies the index of the target insertion string.
The following is a variation of the example above:

<FieldInfo>
 <Fields>
 <Field FieldName = "TTF" DisplayName = "TTest Field" IsIndexed =

InTrust 11.5 SDKReference
Log Knowledge Base API 45

"true"></Field>
 <Field FieldName = "TTF2" DisplayName = "TTest Field 2" IsIndexed =
"true"></Field>
 </Fields>
 <EventRules>
 <Field Name = "TTF" Index = "1"></Field>
 <Field Name = "TTF2" Index = "3"></Field>
 </EventRules>
</FieldInfo>

In this second snippet, the rule applies to all event IDs in a log.

InTrust 11.5 SDKReference
Log Knowledge Base API 46

Enumerations
CustomizableCredentialsType
DomainEnumerationType
IndexBuilderType
IndexLocationType
ScriptLanguage
SiteCollectionType
SiteObjectType
SiteType

CustomizableCredentialsType
enum CustomizableCredentialsType
{
 CurrentCusomizableCredentials,
 DefaultCustomizableCredentials,
 CustomCustomizableCredentials
};

DomainEnumerationType
enum DomainEnumerationType
{
 CurrentDomainEnumeration,
 ComputerBrowserDomainEnumeration,
 ComputerListDomainEnumeration
};

IndexBuilderType
enum IndexBuilderType
{
 CurrentIndexBuilder,
 ServerIndexBuilder,
 SiteIndexBuilder
};

InTrust 11.5 SDKReference
Enumerations 47

IndexLocationType
enum IndexLocationType
{
 CurrentIndexLocation,
 RepositoryIndexLocation,
 CustomIndexLocation
};

RepositoryCommitType
enum RepositoryCommitType
{
 ToRepositoryRepositoryCommitType,
 ToServerRepositoryCommitType
};

ScriptLanguage
enum ScriptLanguage
{
 ECMAScript,
 JScript,
 PSScript,
 VBScript
};

SiteCollectionType
enum SiteCollectionType
{
 VisibleSites,
 AllSites
};

InTrust 11.5 SDKReference
Enumerations 48

SiteObjectType
enum SiteObjectType
{
 UnknownSiteObject,
 MsnWholeNetworkSiteObject,
 DomainSiteObject,
 ComputerSiteObject,
 IPAddressRangeSiteObject,
 ComputerListFileSiteObject,
 OrganizationalUnitSiteObject,
 ActiveDirectorySiteSiteObject,
 EnumerationScriptSiteObject,
 DomainControllersInDomainSiteObject,
 DomainControllersInActiveDirectorySiteSiteObject
};

SiteType
SiteType
{
 MicrosoftNetworkSite,
 UnixNetworkSite
};

InTrust 11.5 SDKReference
Enumerations 49

Interfaces
The following is a list of all interfaces available with the InTrust repository API:

Interface Details

IActiveDirectorySiteSiteObject Represents an Active Directory
site from which to put
computers in an InTrust site.

IBulkEventWithReadExtensions Results of a repository search
as an array of event_with_
read_extensions structures.

IBulkRecord Records packed into a single
batch as an array of record
structures for writing to the
repository.

IBulkRecord2 Results of a repository search
as an array of record2
structures.

IComputerListDomainEnumeration Represents the configuration of
site membership enumeration
through a computer list.

IComputerListFileSiteObject Represents a file that contains
a list of computers to include in
an InTrust site.

IComputerSiteObject Represents a single computer
in an InTrust site.

ICookie Acts as the owner of a
repository search and can stop
the search.

ICredentials Represents a credential set
used by InTrust for access to
resources.

ICustomCredentials Wrapper for a credential set
used by InTrust for access to
resources.

ICustomIndexLocation Gets or sets the location of the
index of a repository.

ICustomizableCredentials This is a wrapper for a
credential set used by InTrust

InTrust 11.5 SDKReference
Interfaces 50

Interface Details

for access to resources.

IDomainEnumeration Indicates which method of
domain enumeration is used
for populating an InTrust site.

IDomainSiteObject Represents computers in an
InTrust site that are indicated
by an Active Directory domain.

IEnumerationScriptSiteObject Represents a script that
enumerates the computers to
include in an InTrust site.

IEventToRecordFormatter Transforms event records to a
representation suitable for
insertion into a repository by
the PutRecords2 method of
IRepositoryRecordInserter.

IForwardingFilterCollection Provides a collection of all
search-based filters associated
with an InTrust repository.

IForwardingSettings Provides access to the event
forwarding settings for a
repository.

IIdleRepository An idle repository has the
correct structure on the file
system, but is not registered
with an InTrust organization.
Currently, you can search in
idle repositories using the
repository API, but you cannot
write to them.

IIdleRepositoryFactory Creates an idle InTrust
repository.

IIndexBuilder Represents the index-building
configuration for the repository.
Indexing can be performed by
an InTrust server or delegated
to InTrust agents in a specific
site.

IIndexingSettings Provides access to the
indexing configuration of a
repository.

InTrust 11.5 SDKReference
Interfaces 51

Interface Details

IIndexManager Provides access to indexing-
related operations.

IIndexManagerFactory Creates an instance of
IIndexManager for a production
or idle repository.

IInTrustEnvironment See IInTrustEnvironment3.

IInTrustEnvironment3 Entry point for access to InTrust
organizations, servers and
repositories.

IInTrustEventory Provides access to the log
knowledge base, which
contains rules that govern the
transformation of log entries
into repository and event
records.

IInTrustEventoryItem Represents an entry in the log
knowledge base.

IInTrustEventoryItemCollection Provides a collection of
IInTrustEventoryItem interfaces.

IInTrustOrganization Legacy interface supplanted by
IInTrustOrganization3.

IInTrustOrganization3 Provides access to an InTrust
organization.

IInTrustOrganizationCollection Provides a collection of all
available InTrust organizations.

IInTrustRepository3 Provides the searching and
writing capabilities of a
repository.

IInTrustRepositoryCollection2 Provides a collection of all
repositories available in the
InTrust organization.

IInTrustRepositorySearcher Provides repository search
capabilities.

IInTrustScriptCollection Provides a collection of scripts
used in InTrust operations.

IInTrustServer Provides access to an InTrust
server.

InTrust 11.5 SDKReference
Interfaces 52

Interface Details

IInTrustServerCollection Provides a collection of all
InTrust servers in the InTrust
organization.

IInTrustSiteCollection Represents the sites in an
InTrust organization.

IIPAddressRangeSiteObject Represents a range of
IP addresses that are included
in an InTrust site.

IJob2 Represents a subset of the
configuration of an InTrust job.

ITransportInfoCollection Provides a collection of all
transport types supported by
InTrust event forwarding.

IMessageFormatCustomInfo Represents a customizable
script-based message
formatter used for event
forwarding.

IMessageFormatInfo Provides access to the
formatting configuration for
forwarded events.

IMessageFormatTypeInfo Defines a message format for
forwarded events and can be
used as a template for creating
new formats.

IMessageFormatTypeInfoCollection Provides a collection of all
message format types
supported by InTrust event
forwarding.

IMicrosoftNetworkSite Represents an InTrust site of
the Microsoft Windows Network
type.

IMultiRepositorySearcher A container for search objects
that lets you search in all of the
specified repositories
simultaneously.

IMultiRepositorySearcherFactory Creates an instance of
IMultiRepositorySearcher.

IObservable Defines a provider for push-
based notification.

InTrust 11.5 SDKReference
Interfaces 53

Interface Details

IObserver Provides a mechanism for
receiving push-based
notifications. You need to
create your own
implementation of this
interface.

IOrganizationalUnitSiteObject Represents an organizational
unit from which to put
computers in an InTrust site.

IProperty Property attached to an InTrust
repository. A property is a way
to tag repositories for arbitrary
purposes.

IPropertyCollection Collection of properties
associated with an InTrust
repository. Access to the
collections is gained through
specialized methods of the
IInTrustRepository3 interface
(such as CustomAttributes).

IRepositoryRecordInserter Provides write access to the
repository that it is associated
with and manages one or more
IRepositoryRecordInserterLight
interfaces, which do the actual
writing.

IRepositoryRecordInserter2 Provides write access to the
repository that it is associated
with and manages one or more
IRepositoryRecordInserterLight
interfaces, which do the actual
writing. This method can
submit records to a queue on
the server or put them directly
in the repository.

IRepositoryRecordInserterLight Generates valid record
structures from predefined and
significant values and writes
them to the repository.

IScript Represents a script used in
InTrust operations.

IScriptArgument Represents an argument used

InTrust 11.5 SDKReference
Interfaces 54

Interface Details

with an InTrust site
enumeration script.

IScriptArgumentCollection Represents the arguments
defined for an InTrust script.

IScriptParameter Represents a customizable
parameter defined for an
InTrust script.

IScriptParameterCollection Represents the parameters
defined for an InTrust script.

ISite Represents an InTrust site,
which can be a regular site
visible in InTrust Manager or a
hidden internal site associated
with a collection visible in
InTrust Deployment Manager.

ISiteComputer Represents a computer that is
included in an InTrust site.

ISiteComputerCollection Represents an InTrust site
associated with a collection
visible in InTrust Deployment
Manager.

ISiteIndexBuilder Represents the distributed
indexing configuration for a
repository.

ISiteObject Represents a computer-
specifying object that can be
included in a site.

ISiteObjectCollection Represents the computer-
specifying objects included in a
site.

ITask2 Represents a subset of the
configuration of an InTrust
scheduled task.

IIndexBuilderAccess Represents the security
settings for performing
repository indexing.

ITransportInfo Represents a transport type
supported by InTrust event
forwarding.

InTrust 11.5 SDKReference
Interfaces 55

Interface Details

ITransportInfoCollection Provides a collection of all
transport types supported by
InTrust event forwarding.

IActiveDirectorySiteSiteObject
Represents an Active Directory site from which to put computers in an InTrust site.

Methods
Domain (getter)
Returns the domain of the site.

Syntax

HRESULT Domain(
[out, retval]BSTR* bstrDomain

);

Parameter

Name Type Meaning

bstrDomain BSTR* Domain of the site.

Domain (setter)
Sets the domain of the site.

Syntax

HRESULT Domain(
[in]BSTR bstrDomain

);

Parameter

Name Type Meaning

bstrDomain BSTR Domain of the site.

InTrust 11.5 SDKReference
Interfaces 56

Site (getter)
Returns the name of the site.

Syntax

HRESULT Site(
[out, retval]BSTR* bstrSite

);

Parameter

Name Type Meaning

bstrSite BSTR* Name of the site.

Site (setter)
Sets the name of the site.

Syntax

HRESULT Site(
[in]BSTR bstrSite

);

Parameter

Name Type Meaning

bstrSite BSTR Name of the site.

IBulkEventWithReadExtensions
Use this interface to represent the results of a repository search as an array of event_with_read_extensions
structures.

Method
GetRecords
Gets records represented by event_with_read_extensions structures.

Syntax

GetRecords(
[out,retval] SAFEARRAY(struct event_with_read_extensions)* events

);

InTrust 11.5 SDKReference
Interfaces 57

Parameter

Name Type Meaning

events SAFEARRAY(struct event_with_read_
extensions)*

Records represented by event_with_read_extensions
structures.

IBulkRecord
Represents a batch of repository records as an array of record structures for writing.

Method
GetRecords
Gets records that match search terms.

Syntax

GetRecords(
[out,retval] SAFEARRAY(struct record)* records

);

Parameter

Name Type Meaning

events SAFEARRAY(struct record)* Packed repository records.

IBulkRecord2
Represents the results of a repository search as an array of record2 structures.

Method
GetRecords
Gets records that match search terms.

Syntax

GetRecords(
[out,retval] SAFEARRAY(struct record2)* records

);

InTrust 11.5 SDKReference
Interfaces 58

Parameter

Name Type Meaning

events SAFEARRAY(struct record2)* Discovered repository records.

IComputerListDomainEnumeration
Represents the configuration of site membership enumeration through a computer list.

Methods
IgnorePasswordsOlderThanInterval (getter)
Returns the maximum age (in days) for the passwords of the accounts of the computers in the site. If a computer
account's password is older than that, the computer is excluded from the site.

Syntax

HRESULT IgnorePasswordsOlderThanInterval(
[out, retval] long* ignoreInterval

);

Parameter

Name Type Meaning

ignoreInterval long* Maximum password age in days.

IgnorePasswordsOlderThanInterval (setter)
Sets the maximum age (in days) for the passwords of the accounts of the computers in the site. If a computer
account's password is older than that, the computer is excluded from the site.

Syntax

HRESULT IgnorePasswordsOlderThanInterval(
[in] long ignoreInterval

);

Parameter

Name Type Meaning

ignoreInterval long Maximum password age in days.

InTrust 11.5 SDKReference
Interfaces 59

IsIgnoringByOldPasswordsEnabled (getter)
Returns whether filtering by password age is enabled. If a computer account's password is older than a
specified interval, the computer is excluded from the site.

Syntax

IsIgnoringByOldPasswordsEnabled(
[out, retval]VARIANT_BOOL* bIgnoringEnabled

);

Parameter

Name Type Meaning

bIgnoringEnabled VARIANT_BOOL* Whether filtering by password age is enabled.

IsIgnoringByOldPasswordsEnabled (setter)
Sets whether filtering by password age is enabled. If a computer account's password is older than a specified
interval, the computer is excluded from the site.

Syntax

HRESULT IsIgnoringByOldPasswordsEnabled(
[in] VARIANT_BOOL bIgnoringEnabled

);

Parameter

Name Type Meaning

bIgnoringEnabled VARIANT_BOOL Whether filtering by password age is enabled.

IComputerListFileSiteObject
Represents a file that contains a list of computers to include in an InTrust site.

Methods
Path (getter)
Returns the path to the computer list file.

Syntax

HRESULT Path(
[out, retval]BSTR* bstrPath

);

InTrust 11.5 SDKReference
Interfaces 60

Parameter

Name Type Meaning

bstrPath BSTR* Path to the computer list file.

Path (setter)
Sets the path to the computer list file.

Syntax

HRESULT Path(
[in]BSTR bstrPath

);

Parameter

Name Type Meaning

bstrPath BSTR Path to the computer list file.

IComputerSiteObject
Represents a single computer in an InTrust site.

Methods
Computer (getter)
Gets the computer wrapped in this site object.

Syntax

HRESULT Computer(
[out, retval]BSTR* bstrComputer

);

Parameter

Name Type Meaning

bstrComputer BSTR* Computer in the site object.

InTrust 11.5 SDKReference
Interfaces 61

Computer (setter)
Sets the computer wrapped in this site object.

Syntax

HRESULT Computer(
[in]BSTR bstrComputer

);

Parameter

Name Type Meaning

bstrComputer BSTR Computer in the site object.

ICookie
Acts as the owner of a repository search and can stop the search.

Method
Stop
Stops the search that this interface is associated with. This method is called automatically when the last
reference to the interface is destroyed.

CAUTION: This is a synchronous method. It must never be called from notifications received
through IObserver, because this will result in a deadlock.

Syntax

HRESULT Stop()

ICredentials
Represents a credential set used by InTrust for access to resources.

Methods
AccountName (getter)
Returns the account name.

InTrust 11.5 SDKReference
Interfaces 62

Syntax

HRESULT AccountName(
[out, retval] BSTR* accountName

);

Parameters

Name Type Meaning

accountName BSTR* Account name.

AccountName (setter)
Sets the account name.

Syntax

HRESULT AccountName(
[in] BSTR accountName

);

Parameters

Name Type Meaning

accountName BSTR Account name.

AccountPassword
Sets the password for the account.

Syntax

HRESULT AccountPassword(
[in] BSTR accountPassword

);

Parameters

Name Type Meaning

accountPassword BSTR Password for the account.

ICustomIndexLocation
Gets or sets the location of the index of a repository.

InTrust 11.5 SDKReference
Interfaces 63

Methods
IndexPath (getter)
Returns the path to the index.

Syntax

HRESULT IndexPath(
[out, retval] BSTR* indexPath

);

Parameter

Name Type Meaning

indexPath BSTR* Path to the index.

IndexPath (setter)
Returns the path to the index.

Syntax

HRESULT IndexPath(
[in] BSTR indexPath

);

Parameter

Name Type Meaning

indexPath BSTR Path to the index.

ICustomCredentials
This is a wrapper for a credential set used by InTrust for access to resources.

Method
Credentials
Provides access to the credential set.

InTrust 11.5 SDKReference
Interfaces 64

Syntax

HRESULT Credentials(
[out, retval] ICredentials** ppCredentials

);

Parameter

Name Type Meaning

ppCredentials ICredentials** Credential set.

ICustomizableCredentials
Indicates what type of credential set is used. If the result is CustomCustomizableCredentials, you can cast this
to ICustomCredentials to work with the credential set.

Method
Type
Gets the type of credential set used.

Syntax

HRESULT Type(
[out, retval] enum CustomizableCredentialsType* pType

);

Parameter

Name Type Meaning

pType enum CustomizableCredentialsType* Type of credential set used.

IDomainEnumeration
Indicates which method of domain enumeration is used for populating an InTrust site. If the result is
ComputerListDomainEnumeration, you can cast this to IComputerListDomainEnumeration to obtain and
modify the configuration.

InTrust 11.5 SDKReference
Interfaces 65

Method
Type
Gets the method of domain enumeration used for populating an InTrust site.

Syntax

HRESULT Type(
[out, retval] enum DomainEnumerationType* pType

);

Parameter

Name Type Meaning

pType enum DomainEnumerationType* Which method of domain enumeration is used.

IDomainSiteObject
Represents computers in an InTrust site that are indicated by an Active Directory domain.

Methods
Domain (getter)
Gets the domain that indicates the computers.

Syntax

HRESULT Domain(
[out, retval]BSTR* bstrDomain

);

Parameter

Name Type Meaning

bstrDomain BSTR* Domain that indicates the computers.

Domain (setter)
Sets the domain that indicates the computers.

InTrust 11.5 SDKReference
Interfaces 66

Syntax

RESULT Domain(
[in]BSTR bstrDomain

);

Parameter

Name Type Meaning

bstrDomain BSTR Domain that indicates the computers.

IEnumerationScriptSiteObject
Represents a script that enumerates the computers to include in an InTrust site.

Methods
Script (getter)
Returns the script that enumerates site computers.

Syntax

HRESULT Script(
[out, retval]IScript** ppScript

);

Parameter

Name Type Meaning

ppScript IScript** Script that enumerates site computers.

Script (setter)
Sets the script that enumerates site computers.

Syntax

HRESULT Script(
[in]IScript* pScript

);

Parameter

Name Type Meaning

pScript IScript* Script that enumerates site computers.

InTrust 11.5 SDKReference
Interfaces 67

Name (getter)
Returns the name of the script.

Syntax

HRESULT Name(
[out, retval]BSTR* bstrName

);

Parameter

Name Type Meaning

bstrName BSTR* Name of the script.

Name (setter)
Sets the name of the script.

Syntax

HRESULT Script(
[in]BSTR bstrName

);

Parameter

Name Type Meaning

bstrName BSTR Name of the script.

Arguments
Provides access to the arguments used with the script.

Syntax

HRESULT Arguments(
[out, retval]IScriptArgumentCollection** ppArguments

);

Parameter

Name Type Meaning

ppArguments IScriptArgumentCollection** Arguments used with the script.

InTrust 11.5 SDKReference
Interfaces 68

IEventToRecordFormatter
Transforms event records to a representation suitable for insertion into a repository by the PutRecords2 method
of IRepositoryRecordInserter. For details about event records, see Event Record Data Structures.

Method
Format
Performs the event-to-record transformation.

Syntax

HRESULT Format(
[in] SAFEARRAY(struct event_with_extensions) events,
[out, retval] IBulkRecord** ppBulkRecord

);

Parameters

Name Type Meaning

events SAFEARRAY(struct event_with_extensions) Event records to put into the repository.

ppBulkRecord IBulkRecord** Repository records prepared for insertion.

IForwardingFilterCollection
Provides a collection of all search-based filters associated with an InTrust repository.

Methods
_NewEnum
Returns an enumerator for the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

InTrust 11.5 SDKReference
Interfaces 69

Add
Adds a new filter based on a Repository Viewer search.

Syntax

HRESULT Add(
[in] BSTR bstrPath

);

Parameter

Name Type Meaning

bstrPath BSTR Path to the Repository Viewer search to make the new filter from. At this time, an internal
representation of the path is expected, and there is no usable way to look it up for a specific
search. Later implementations should fix this.

Remove
Removes the specified filter from the collection. To specify the filter, pass in the path to its corresponding
Repository Viewer search.

Syntax

HRESULT Remove(
[in] BSTR bstrPath

);

Parameter

Name Type Meaning

bstrPath BSTR Path to the Repository Viewer search to make the new filter from.

IForwardingSettings
Provides access to the event forwarding settings for a repository.

Methods
ForwardingEnabled (getter)
Returns whether event forwarding is enabled for the repository.

InTrust 11.5 SDKReference
Interfaces 70

Syntax

HRESULT ForwardingEnabled(
[out, retval] VARIANT_BOOL* pForwardingEnabled

);

Parameter

Name Type Meaning

pForwardingEnabled VARIANT_BOOL* Whether event forwarding is enabled for the repository.

ForwardingEnabled (setter)
Enables or disables event forwarding for the repository.

Syntax

HRESULT ForwardingEnabled(
[in] VARIANT_BOOL ForwardingEnabled

);

Parameter

Name Type Meaning

pForwardingEnabled VARIANT_BOOL Whether to enable or disable event forwarding for the repository.

ForwardingFilters
Returns the collection of repository searches used as forwarding filters. Management of these filters is outside
the scope of the InTrust SDK.

Syntax

HRESULT ForwardingFilters(
[out, retval] IForwardingFilterCollection** ppForwardingFilters

);

Parameter

Name Type Meaning

ppForwardingFilters IForwardingFilterCollection** Repository searches used as forwarding filters.

ForwardingServer (getter)
Returns the InTrust server that manages event forwarding from the repository.

InTrust 11.5 SDKReference
Interfaces 71

Syntax

HRESULT ForwardingServer(
[out, retval] IInTrustServer3** ppForwardingServer

);

Parameters

Name Type Meaning

ppForwardingServer IInTrustServer3** InTrust server that manages event forwarding from the repository.

ForwardingServer (setter)
Sets the InTrust server that manages event forwarding from the repository.

Syntax

HRESULT ForwardingServer(
[in] IInTrustServer3* pForwardingServer

);

Parameters

Name Type Meaning

pForwardingServer IInTrustServer3* InTrust server that manages event forwarding from the repository.

Host (getter)
Returns the name or IP address of the destination host for event forwarding.

Syntax

HRESULT Host(
[out, retval] BSTR* bstrHost

);

Parameter

Name Type Meaning

bstrHost BSTR* Name or IP address of the destination host for event forwarding.

Host (setter)
Sets the name or IP address of the destination host for event forwarding.

InTrust 11.5 SDKReference
Interfaces 72

Syntax

HRESULT Host(
[in] BSTR bstrHost

);

Parameter

Name Type Meaning

bstrHost BSTR Name or IP address of the destination host for event forwarding.

MessageFormat (getter)
Returns the details of the message format used for event forwarding from the repository.

Syntax

HRESULT MessageFormat(
[out, retval] IMessageFormatInfo** ppMessageFormatInfo

);

Parameter

Name Type Meaning

ppMessageFormatInfo IMessageFormatInfo
**

Details of the message format used for event forwarding from
the repository.

MessageFormat (setter)
Sets the message format to use for event forwarding from the repository.

Syntax

HRESULT MessageFormat(
[in] IMessageFormatInfo* pMessageFormatInfo

);

Parameter

Name Type Meaning

pMessageFormatInfo IMessageFormatInfo
*

Details of the message format used for event forwarding from
the repository.

Port (getter)
Returns the destination port for event forwarding.

InTrust 11.5 SDKReference
Interfaces 73

Syntax

HRESULT Port(
[out, retval] BSTR* bstrPort

);

Parameter

Name Type Meaning

bstrPort BSTR* Destination port for event forwarding.

Port (setter)
Sets the destination port for event forwarding.

Syntax

HRESULT Port(
[in] BSTR bstrPort

);

Parameter

Name Type Meaning

bstrPort BSTR Destination port for event forwarding.

TransportInfo (getter)
Returns the details of the transport selected for event forwarding from the repository.

Syntax

HRESULT Transport(
[out, retval] ITransportInfo** ppTransportInfo

);

Parameter

Name Type Meaning

ppTransportInfo ITransportInfo** Transport selected for event forwarding from the repository.

TransportInfo (setter)
Sets the transport for event forwarding from the repository.

InTrust 11.5 SDKReference
Interfaces 74

Syntax

HRESULT Transport(
[in] ITransportInfo* pTransportInfo

);

Parameter

Name Type Meaning

pTransportInfo ITransportInfo* Transport selected for event forwarding from the repository.

IIdleRepository
Represents an idle repository. An idle repository has the correct structure on the file system, but is not registered
with an InTrust organization. Currently, you can search in idle repositories using the repository API, but you
cannot write to them.

Method
Searcher
Returns a searcher interface for the idle repository.

Syntax

HRESULT Searcher(
[in, optional] VARIANT pIndexManager,
[out, retval] IInTrustRepositorySearcher** ppSearcher);

Parameters

Name Type Meaning

pIndexManager VARIANT Interface that contains details about the index to use for
searching in the repository. See IIndexManager for details.

ppSearcher IInTrustRepositorySearcher Searcher interface that you can supply your query to.

IIdleRepositoryFactory
Creates an idle InTrust repository. An idle repository has the correct structure on the file system, but is not
registered with an InTrust organization.

InTrust 11.5 SDKReference
Interfaces 75

Method
MakeIdleRepository
Returns an idle InTrust repository.

Syntax

HRESULT MakeIdleRepository(
[in] BSTR bstrPath,
[in] BSTR bstrUser,
[in] BSTR bstrPassword,
[out, retval] IIdleRepository **ppRepository);

Parameters

Name Type Meaning

bstrPath BSTR Search query.

bstrUser BSTR User account to use for the operation.

bstrPassword BSTR Password to use for the operation.

ppRepository IIdleRepository The newly-created idle repository.

IIndexBuilder
Represents the index-building configuration for the repository. Indexing can be performed by an InTrust server
or delegated to InTrust agents in a specific site. Offloading indexing to additional agents can help with InTrust
server load balancing.
All this interface does is say what is used for building the index for the repository. If the type of builder is
SiteIndexBuilder, then you can configure it by casting IIndexBuilder to ISiteIndexBuilder and working with
its methods.

Method
Type

Syntax

HRESULT Type(
[out, retval] enum IndexBuilderType* pType

);

InTrust 11.5 SDKReference
Interfaces 76

Parameter

Name Type Meaning

pType enum IndexBuilderType* What resources are used for index building.

IIndexingSettings
Provides access to the indexing configuration of a repository.

Methods
IndexingServer (getter)
Returns the indexing server for the repository.

Syntax

HRESULT IndexingServer(
[out, retval] IInTrustServer3** ppIndexingServer

);

Parameter

Name Type Meaning

ppIndexingServer IInTrustServer3** Indexing server for the repository.

IndexingServer (setter)
Sets the specified indexing server for the repository.

Syntax

HRESULT IndexingServer(
[in] IInTrustServer3* pIndexingServer

);

Parameter

Name Type Meaning

pIndexingServer IInTrustServer3* Indexing server to set for the repository.

IndexBuilder
Provides access to the index-building configuration for the repository. For details, see IIndexBuilder.

InTrust 11.5 SDKReference
Interfaces 77

Syntax

HRESULT IndexBuilder(
[in, defaultvalue(CurrentIndexBuilder)] enum IndexBuilderType,
[out, retval] IIndexBuilder** pIndexPathType

);

Parameter

Name Type Meaning

enum IndexBuilderType Selects the method's operation mode:

l Return the currently set index-building configuration

l Switch to InTrust server indexing

l Switch to delegated indexing by agents in an InTrust
site

pIndexPathType IIndexBuilder** Index-building configuration for the repository.

IndexLocation
Returns the location of the index for the repository.

Syntax

HRESULT IndexLocation(
[in, defaultvalue(CurrentIndexLocation)] enum IndexLocationType,
[out, retval] IIndexLocation** pIndexPathType

);

Parameter

Name Type Meaning

CurrentIndexLocation enum IndexLocationType

pIndexPathType IIndexLocation** Indexing server for the repository.

IsIndexingEnabled (getter)
Indicates whether indexing is enabled for the repository.

Syntax

HRESULT IsIndexingEnabled(
[out, retval] VARIANT_BOOL* bEnabled

);

InTrust 11.5 SDKReference
Interfaces 78

Parameter

Name Type Meaning

bEnabled VARIANT_BOOL* Whether indexing is enabled for the repository.

IsIndexingEnabled (setter)
Enables or disables indexing for the repository.

Syntax

HRESULT IsIndexingEnabled(
[in] VARIANT_BOOL bEnabled

);

Parameter

Name Type Meaning

bEnabled VARIANT_BOOL Whether to enable or disable indexing for the repository.

IIndexLocation
Represents the location of the index, which can be a folder in the repository share, as by default, or a custom
network share.
All this interface does is say whether the index is in the default or a custom location. If it is custom, cast the
IIndexLocation instance to ICustomIndexLocation to get or set the path.

Method
Type

Syntax

HRESULT Type(
[out, retval] enum IndexLocationType* pType)

);

Parameter

Name Type Meaning

pType enum IndexLocationType* Where the index is located: default folder or share.

InTrust 11.5 SDKReference
Interfaces 79

IIndexManager
Provides access to indexing-related operations.

Methods
GetID
Returns the ID of the index manager.

Syntax

HRESULT GetID(
[out, retval] BSTR*

);

Parameter

Name Type Meaning

BSTR* ID of the index manager.

Shutdown
Shuts down the index manager.

Syntax

HRESULT Shutdown();

IIndexManagerFactory
Creates an instance of IIndexManager for a production or idle repository.

Methods
GetRemoteIndexManager
Creates an IIndexManager instance for a production repository.

Syntax

HRESULT GetRemoteIndexManager(
[in] BSTR pszServerName,
[in] BSTR pszRepositoryIdentity,
[out] IIndexManager** ppManager

);

InTrust 11.5 SDKReference
Interfaces 80

Parameters

Name Type Meaning

pszServerName BSTR Name of an InTrust server in the same organization as the
repository.

pszRepositoryIdentity BSTR ID of the production repository that you need.

ppManager IIndexManager
**

Index manager for the production repository.

GetLocalIndexManager
Creates an IIndexManager instance for an idle repository.

Syntax

HRESULT GetLocalIndexManager(
[in] BSTR pszIndexPath,
[in] BSTR pszRepositoryPath,
[in] BSTR pszAcount,
[in] BSTR pszPassword,
[in] enum modeOpen mode,
[out, retval] IIndexManager**

);

Parameters

Name Type Meaning

pszIndexPath BSTR Path to the index data for the idle repository.

pszRepositoryPath BSTR Path to the idle repository file structure.

pszAcount BSTR User name for access to the idle repository.

pszPassword BSTR Password for access to the idle repository.

mode enum MODE_OPEN = 0
MODE_CREATE = 1

IIndexManager** Index manager to use for indexing-related operations.

IInTrustEnvironment
Entry point for access to InTrust organizations, servers and repositories. Whenever you obtain this legacy
interface, you should cast it to IInTrustEnvironment3 and use that instead.

InTrust 11.5 SDKReference
Interfaces 81

Methods
ConnectToServer
Provides access to the specified InTrust server.

CAUTION: For this operation to succeed, the account you are using must be a member of the
AMS Readers local group on the InTrust server you want to connect to.
Alternatively, it can be an InTrust organization administrator. To configure this privilege for the
account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

Syntax

HRESULT ConnectToServer(
[in] BSTR bstrServerBinding,
[out, retval] IInTrustServer** ppServer

);

Parameters

Name Type Meaning

bstrServerBinding BSTR Name of the InTrust server.

IInTrustServer** InTrust server interface.

Organizations
Provides a collection of available InTrust organizations.

Syntax

HRESULT Organizations(
[out, retval] IInTrustOrganizationCollection** ppOrganization

);

Parameter

Name Type Meaning

ppOrganization IInTrustOrganizationCollection** Collection of available InTrust organizations.

Eventory
Provides access to the log knowledge database associated with the InTrust organization.

InTrust 11.5 SDKReference
Interfaces 82

Syntax

HRESULT Eventory(
[out, retval] IInTrustEventory **ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustEventory** Log knowledge database associated with the InTrust organization.

IInTrustEnvironment3
Entry point for access to InTrust organizations, servers and repositories.

Methods
ConnectToServer
Provides access to the specified InTrust server. The credentials of the current user are used for the operation.

CAUTION: For this operation to succeed, the account you are using must be a member of the
AMS Readers local group on the InTrust server you want to connect to.
Alternatively, it can be an InTrust organization administrator. To configure this privilege for the
account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

Syntax

HRESULT ConnectToServer(
[in] BSTR bstrServerBinding,
[out, retval] IInTrustServer** ppServer

);

Parameters

Name Type Meaning

bstrServerBinding BSTR Name of the InTrust server.

IInTrustServer** InTrust server interface.

ConnectToServerLocal
Provides access to the InTrust server running locally.

InTrust 11.5 SDKReference
Interfaces 83

Syntax

ConnectToServerLocal(
[out, retval] IInTrustServer** ppServer

);

Parameters

Name Type Meaning

ppServer IInTrustServer** Interface for the local InTrust server.

ConnectToServerWithCredentials
Provides access to the specified InTrust server using the specified credentials.

Syntax

HRESULT ConnectToServerWithCredentials(
[in] BSTR bstrServerBinding,
[in] BSTR bstrUserName,
[in] BSTR bstrUserPasword,
[out, retval] IInTrustServer** ppServer);

Parameters

Name Type Meaning

bstrServerBinding BSTR Name of the InTrust server.

bstrUserName BSTR User name of the account to use for the operation.

bstrUserPasword BSTR Password of the account to use for the operation.

ppServer IInTrustServer** Interface for the InTrust server.

Organizations
Provides a collection of available InTrust organizations.

Syntax

HRESULT Organizations(
[out, retval] IInTrustOrganizationCollection** ppOrganization

);

Parameter

Name Type Meaning

ppOrganization IInTrustOrganizationCollection** Collection of available InTrust organizations.

InTrust 11.5 SDKReference
Interfaces 84

IInTrustEventory
Provides access to the log knowledge base, which contains rules that govern the transformation of log entries
into repository and event records.

Methods
Eventory
Returns a string representation of the log knowledge base.

Syntax

HRESULT Eventory(
[out, retval] BSTR* bstrEventory

);

Parameters

Name Type Meaning

bstrEventory BSTR* String representation of the log knowledge base.

Logs
Provides access to the log knowledge base entries through an IInTrustEventoryItemCollection.

Syntax

HRESULT Logs(
[out, retval] IInTrustEventoryItemCollection** pVal

);

Parameters

Name Type Meaning

pVal IInTrustEventoryItemCollection** Log knowledge base entries.

DataSources
HRESULT DataSources(

[out, retval] IInTrustEventoryItemCollection** pVal
);

InTrust 11.5 SDKReference
Interfaces 85

Parameters

Name Type Meaning

pVal IInTrustEventoryItemCollection** Log knowledge base entries.

IInTrustEventoryItem
Represents an entry in the log knowledge base.

Methods
Name
Returns the name of the log knowledge database entry.

Syntax

HRESULT Name(
[out, retval] BSTR* bstrName

);

Parameter

Name Type Meaning

bstrName BSTR* Name of the log knowledge database entry.

Rules (out parameter)
Returns the rules defined for the log knowledge database entry. For details about the rule format, see Log
Transformation Rule Format.

Syntax

HRESULT Rules(
[out, retval] BSTR* bstrRules

);

Parameter

Name Type Meaning

bstrRules BSTR* Textual representation of the rules defined for the log knowledge database entry.

InTrust 11.5 SDKReference
Interfaces 86

Rules (in parameter)
Sets the rules defined for the log knowledge database entry. For details about the rule format, see Log
Transformation Rule Format.

Syntax

HRESULT Rules(
[in] BSTR bstrRules

);

Parameter

Name Type Meaning

bstrRules BSTR Textual representation of the rules defined for the log knowledge database entry.

IInTrustEventoryItemCollection
Provides a collection of IInTrustEventoryItem interfaces.

Methods
Item
Gets a log knowledge base entry from the collection by name.

Syntax

HRESULT Item(
[in] BSTR bstrLogName,
[out, retval] IInTrustEventoryItem** ppEventoryItem

);

Parameters

Name Type Meaning

bstrLogName BSTR Name of the log knowledge base entry. This name must exist in the
collection.

ppEventoryItem IInTrustEventoryItem
**

The log knowledge base entry.

_NewEnum
Returns an enumerator for the collection.

InTrust 11.5 SDKReference
Interfaces 87

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameters

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Add
Adds the specified entry.

Syntax

HRESULT Add(
[in] BSTR bstrItemName,
[in] BSTR bstrItemRules,
[out, retval] IInTrustEventoryItem** ppEventoryItem

);

Parameters

Name Type Meaning

bstrItemName BSTR Name of the entry to add. The name must be unique.

bstrItemRules BSTR Textual definition of the entry.

ppEventoryItem IInTrustEventoryItem The new log knowledge base entry.

Remove
Removes an entry from the collection by name.

Syntax

HRESULT Remove(
[in] BSTR bstrItemName

);

Parameter

Name Type Meaning

bstrItemName BSTR Name of the entry to remove.

InTrust 11.5 SDKReference
Interfaces 88

IInTrustOrganization
Provides access to an InTrust organization.

IMPORTANT: This interface is deprecated. Before you start working with an organization, cast
IInTrustOrganization to IInTrustOrganization3.

Methods
Name
Returns the name of the InTrust organization.

Syntax

HRESULT Name(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR Name of the InTrust organization.

Servers
Provides access to a collection of the InTrust servers in an InTrust organization.

Syntax

HRESULT Servers(
[out, retval] IInTrustServerCollection** ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustServerCollection** Collection of InTrust servers.

Repositories
Provides access to a collection of repositories in an InTrust organization.

Syntax

HRESULT Repositories(
[out, retval] IInTrustRepositoryCollection** ppVal

);

InTrust 11.5 SDKReference
Interfaces 89

Parameter

Name Type Meaning

ppVal IInTrustRepositoryCollection** Collection of repositories.

Eventory
Provides access to the organization-wide log knowledge base. See Log Knowledge Base API for details.

Syntax

HRESULT Eventory(
[out, retval] IInTrustEventory **ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustEventory** Log knowledge base.

IInTrustOrganization3
Provides access to an InTrust organization.

Methods
Eventory
Provides access to the log knowledge database associated with the InTrust organization.

Syntax

HRESULT Eventory(
[out, retval] IInTrustEventory **ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustEventory** Log knowledge database associated with the InTrust organization.

Name
Returns the name of the InTrust organization.

InTrust 11.5 SDKReference
Interfaces 90

Syntax

HRESULT Name(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR Name of the InTrust organization.

Servers
Provides access to a collection of the InTrust servers in an InTrust organization.

Syntax

HRESULT Servers(
[out, retval] IInTrustServerCollection** ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustServerCollection** Collection of InTrust servers.

Scripts
Provides access to a collection of scripts that perform various InTrust operations.

Syntax

HRESULT Scripts(
[out, retval]IInTrustScriptCollection** ppScripts

);

Parameters

Name Type Meaning

ppScripts IInTrustScriptCollection** Collection of InTrust-specific scripts.

Sites
Provides access to a collection of sites in an InTrust organization.

InTrust 11.5 SDKReference
Interfaces 91

Syntax

HRESULT Sites(
[in, defaultvalue(VisibleSites)] enum SiteCollectionType,
[out, retval] IInTrustSiteCollection** ppSites

);

Parameters

Name Type Meaning

enum
SiteCollectionType

Whether you want all sites (including internally-used hidden ones) or just
the general-purpose sites.

ppSites IInTrustSiteCollection
**

Collection of InTrust sites.

Repositories2
Provides access to a collection of repositories in an InTrust organization.

Syntax

HRESULT Repositories2(
[out, retval] IInTrustRepositoryCollection2** ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustRepositoryCollection2** Collection of repositories.

Eventory
Provides access to the organization-wide log knowledge base. See Log Knowledge Base API for details.

Syntax

HRESULT Eventory(
[out, retval] IInTrustEventory **ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustEventory** Log knowledge base.

InTrust 11.5 SDKReference
Interfaces 92

IInTrustOrganizationCollection
Provides a collection of all available InTrust organizations.

Methods
Item
Provides access to the specified InTrust organization.

Syntax

HRESULT Item(
[in] BSTR bstrOrganizationIdentity,
[out, retval] IInTrustOrganization**

);

Parameters

Name Type Meaning

bstrOrganizationIdentity BSTR Name of the InTrust organization.

IInTrustOrganization** InTrust organization interface.

_NewEnum
Returns an enumerator for the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Enumerated InTrust organizations.

IInTrustRepository3
Provides the searching and writing capabilities of a repository.

InTrust 11.5 SDKReference
Interfaces 93

Methods
CustomAttributes
Provides access to the collection (instance of IPropertyCollection) of custom attributes attached to an InTrust
repository (instances of IProperty).

Syntax

HRESULT CustomAttributes(
[out, retval] IPropertyCollection** pVal

);

Parameter

Name Type Meaning

pVal IPropertyCollection** Collection of custom attributes attached to the repository.

Description (getter)
Returns the description of the repository.

Syntax

HRESULT Description(
[out, retval] BSTR* description

);

Parameter

Name Type Meaning

description BSTR* Description of the repository.

Description (setter)
Sets the description of the repository.

Syntax

HRESULT Description(
[in] BSTR description

);

Parameter

Name Type Meaning

description BSTR Description of the repository.

InTrust 11.5 SDKReference
Interfaces 94

ForwardingSettings
Provides access to the forwarding settings for the repository.

Syntax

HRESULT ForwardingSettings(
[out, retval] IForwardingSettings** ppForwardingSettings

);

Parameter

Name Type Meaning

ppForwardingSettings IForwardingSettings** Forwarding settings for the repository.

ID
Returns the GUID of the repository.

Syntax

HRESULT ID(
[out, retval] GUID* pID

);

Parameter

Name Type Meaning

pID GUID* GUID of the repository.

IndexingSettings
Provides access to the indexing settings for the repository.

Syntax

HRESULT IndexingSettings(
[out, retval] IIndexingSettings** ppIndexingSettings

);

Parameter

Name Type Meaning

ppIndexingSettings IIndexingSettings** Indexing settings for the repository.

Inserter
Provides an interface for inserting records into the repository. For details, see Writing Records.

InTrust 11.5 SDKReference
Interfaces 95

CAUTION: A new inserter is created every time you call this method. It's likely that you only want a
single unique inserter per repository for all of your writing activity.

Syntax

HRESULT Inserter(
[out, retval] IRepositoryRecordInserter** ppInserter

);

Parameter

Name Type Meaning

ppInserter IRepositoryRecordInserter** Record-inserting interface associated with a particular repository.

Name (getter)
Returns the name of the repository.

Syntax

HRESULT Name(
[out, retval] BSTR* name

);

Parameter

Name Type Meaning

name BSTR* Name of the repository. The name is not necessarily unique in an organization.

Name (setter)
Sets the name of the repository.

Syntax

HRESULT Name(
[in] BSTR name

);

Parameter

Name Type Meaning

name BSTR Name of the repository. The name is not necessarily unique in an organization.

Path (getter)
Returns the path to the repository.

InTrust 11.5 SDKReference
Interfaces 96

Syntax

HRESULT Path(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR* UNC path to the share that contains the repository.

Path (setter)
Sets the path to the repository.

Syntax

HRESULT Path(
[in] BSTR path

);

Parameter

Name Type Meaning

path BSTR UNC path to the share that contains the repository.

RepositoryAccessCredentials
Provides access to the credentials that are used for access to the repository.

Syntax

HRESULT RepositoryAccessCredentials(
[in, defaultvalue(CurrentCusomizableCredentials)] enum

CustomizableCredentialsType type,
[out, retval] ICustomizableCredentials** pCredentials

);

Parameters

Name Type Meaning

type enum CustomizableCredentialsType How repository access is currently configured.

pCredentials ICustomizableCredentials** Credentials that are used for access to the repository.

Searcher
Provides an interface for finding records in the repository. For details, see Getting Records.

InTrust 11.5 SDKReference
Interfaces 97

Syntax

HRESULT Searcher(
[out, retval] IInTrustRepositorySearcher** ppSearcher

);

Parameter

Name Type Meaning

ppSearcher IInTrustRepositorySearcher A searcher interface that accepts search queries and provides
results.

Statuses
Gets the status enumerator for the repository

Syntax

HRESULT Statuses(
[out, retval] IInTrustRepositoryStatusCollection** pVal

);

Parameter

Name Type Meaning

pVal IInTrustRepositoryStatusCollection** Status enumerator for the repository.

IInTrustRepositoryCollection2
Provides a collection of all repositories available in the InTrust organization.

Methods
Item
Gets the specified repository from a collection.

Syntax

HRESULT Item(
[in] BSTR bstrRepositoryIdentity,
[out, retval] IInTrustRepository3**

);

InTrust 11.5 SDKReference
Interfaces 98

Parameters

Name Type Meaning

bstrRepositoryIdentity BSTR A piece of information that identifies the repository. You can
specify one of the following:

l Repository name

l Repository GUID

l UNC path to the repository share

The Item method tries to interpret its input parameter as each of
these identifiers, in that order.

IInTrustRepository3
**

Repository interface.

Add
Creates a repository with the specified properties in a collection. To configure additional properties, use the
methods of the repository that is returned.
Note that even though this makes the repository a member of the collection, it will not actually be created until
you have called the Commit method of its IInTrustRepository3 interface.

CAUTION: For this operation to succeed, the account you are using must be an InTrust organization
administrator. To configure this privilege for the account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

Syntax

HRESULT Add(
[in] BSTR bstrRepositoryName,
[in] BSTR bstrRepositoryPath,
[out, retval] IInTrustRepository3**

);

Parameters

Name Type Meaning

bstrRepositoryName BSTR Name of the repository.

bstrRepositoryPath BSTR UNC path to the share that contains the repository.

IInTrustRepository3** Repository interface.

Remove
Removes the specified repository from the collection, deleting it from the InTrust organization configuration.

InTrust 11.5 SDKReference
Interfaces 99

CAUTION: For this operation to succeed, the account you are using must be an InTrust organization
administrator. To configure this privilege for the account, do one of the following:

l In InTrust Deployment Manager, click Manage | Configure Access.

l In InTrust Manager, open the properties of the root node.

Syntax

HRESULT Remove(
[in] BSTR bstrRepositoryIdentity

);

Parameter

Name Type Meaning

bstrRepositoryIdentity BSTR A piece of information that identifies the repository. You can specify one of the
following:

l Repository name

l Repository GUID

l UNC path to the repository share

The Item method tries to interpret its input parameter as each of these
identifiers, in that order.

_NewEnum
References repositories in a collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Access to repositories in a collection.

IInTrustRepositorySearcher
Provides repository search capabilities.

InTrust 11.5 SDKReference
Interfaces 100

Method
Search
Runs a repository search using the specified query.

Syntax

HRESULT ID(
[in] BSTR rel_query,
[out] IObservable** search_object

);

Parameters

Name Type Meaning

rel_query BSTR Search query.

search_object IObservable Interface that you can subscribe to for search results.

IInTrustScriptCollection
Provides a collection of scripts used in InTrust operations.

Methods
_NewEnum
Returns an enumerator for the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Add
Adds a script to the collection.

InTrust 11.5 SDKReference
Interfaces 101

Syntax

HRESULT Add(
[out, retval] IScript** ppScript

);

Parameters

Name Type Meaning

ppScript IScript** Script to add to the collection.

Item
Gets a script from the collection by name.

Syntax

HRESULT Item(
[in] BSTR bstrScript,
[out, retval] IScript** ppScript

);

Parameters

Name Type Meaning

bstrScript BSTR Name of the script.

ppScript IScript** The returned script.

Remove
Removes the script with the specified name from the collection.

Syntax

HRESULT Remove(
[in] BSTR bstrScript

);

Parameter

Name Type Meaning

bstrScript BSTR Name of the script to remove.

IInTrustServer
Provides access to an InTrust server.

InTrust 11.5 SDKReference
Interfaces 102

Methods
Name
Returns the name of the InTrust server.

Syntax

HRESULT Name(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR* Name of the InTrust server.

Organization
The InTrust organization that the InTrust server belongs to.

Syntax

HRESULT Organization(
[out, retval] IInTrustOrganization** pVal

);

Parameter

Name Type Meaning

pVal IInTrustOrganization** InTrust organization interface.

IInTrustServer3
Provides access to an InTrust server.

Methods
ForwardingSupport
Returns the global event forwarding configuration.

InTrust 11.5 SDKReference
Interfaces 103

Syntax

HRESULT ForwardingSupport(
[out, retval] IInTrustServerForwardingSupport** ppVal

);

Parameter

Name Type Meaning

ppVal IInTrustServerForwardingSupport** Global event forwarding configuration.

ID
Returns the ID of the InTrust server.

Syntax

HRESULT ID(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR* ID of the InTrust server.

Name
Returns the name of the InTrust server.

Syntax

HRESULT Name(
[out, retval] BSTR* pVal

);

Parameter

Name Type Meaning

pVal BSTR* Name of the InTrust server.

Organization
The InTrust organization that the InTrust server belongs to.

InTrust 11.5 SDKReference
Interfaces 104

Syntax

HRESULT Organization(
[out, retval] IInTrustOrganization** pVal

);

Parameter

Name Type Meaning

pVal IInTrustOrganization** InTrust organization interface.

Version
Returns the InTrust Server version.

Syntax

HRESULT Version(
[out, retval] BSTR* pVersion

);

Parameter

Name Type Meaning

pVersion BSTR* InTrust Server version.

IInTrustServerCollection
Provides a collection of all InTrust servers in the InTrust organization.

Methods
Item
Provides access to the specified InTrust server.

Syntax

HRESULT Item(
[in] BSTR bstrServerIdentity,
[out, retval] IInTrustServer**

);

InTrust 11.5 SDKReference
Interfaces 105

Parameters

Name Type Meaning

bstrServerIdentity BSTR Name of the InTrust server.

IInTrustServer** InTrust server interface.

_NewEnum
References InTrust servers in a collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Enumerated InTrust servers.

IInTrustServerForwardingSupport
Provides access to global InTrust event forwarding settings.

Methods
SupportedMessageFormats
Returns the message formats that InTrust supports for event forwarding.

Syntax

HRESULT SupportedMessageFormats(
[out, retval] IMessageFormatTypeInfoCollection** ppMessageFormats

);

Parameter

Name Type Meaning

ppMessageFormats IMessageFormatTypeInfoCollection
**

Message formats that InTrust supports for event
forwarding.

InTrust 11.5 SDKReference
Interfaces 106

SupportedTransports
Returns the transports that InTrust event forwarding supports.

Syntax

HRESULT SupportedTransports(
[out, retval] ITransportInfoCollection** ppTransports

);

Parameter

Name Type Meaning

ppTransports ITransportInfoCollection** Transports that InTrust event forwarding supports.

IInTrustSiteCollection
Represents the sites in an InTrust organization.

Methods
_NewEnum
Returns an enumerator for the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Add
Adds a site to the collection.

Syntax

HRESULT Add(
[in] enum SiteType site,
[out, retval] ISite**

);

InTrust 11.5 SDKReference
Interfaces 107

Parameters

Name Type Meaning

site enum SiteType What kind of site to add.

ISite** The site to add to the collection.

Item
Gets a site from the collection by identity.

Syntax

HRESULT Item(
[in] BSTR siteIdentity,
[out, retval] ISite**

);

Parameters

Name Type Meaning

siteIdentity BSTR Identity of the site. The method accepts site display names and GUIDs.

ISite** The returned site.

Remove
Removes the site with the specified identity from the collection.

Syntax

HRESULT Remove(
[in] BSTR siteIdentity

);

Parameter

Name Type Meaning

siteIdentity BSTR Identity of the site to remove. The method accepts site display names and GUIDs.

IIPAddressRangeSiteObject
Represents a range of IP addresses that are included in an InTrust site.

InTrust 11.5 SDKReference
Interfaces 108

Methods
FromIPAddress (getter)
Returns the starting IP address in the range.

Syntax

HRESULT FromIPAddress(
[out, retval]BSTR* bstrIPAddress

);

Parameters

Name Type Meaning

bstrIPAddress BSTR* Starting IP address in the range.

FromIPAddress (setter)
Sets the starting IP address in the range.

Syntax

HRESULT FromIPAddress(
[in]BSTR bstrIPAddress

);

Parameters

Name Type Meaning

bstrIPAddress BSTR Starting IP address in the range.

ToIPAddress (getter)
Returns the ending IP address in the range.

Syntax

HRESULT ToIPAddress(
[out, retval]BSTR* bstrIPAddress

);

Parameters

Name Type Meaning

bstrIPAddress BSTR* Ending IP address in the range.

InTrust 11.5 SDKReference
Interfaces 109

ToIPAddress (setter)
Sets the ending IP address in the range.

Syntax

HRESULT ToIPAddress(
[in]BSTR bstrIPAddress

);

Parameters

Name Type Meaning

bstrIPAddress BSTR Ending IP address in the range.

IJob2
Represents a subset of the configuration of an InTrust job.

Method
JobCredentials
Provides access to the credentials that the job uses for access to the resources it requires.

Syntax

HRESULT JobCredentials(
[in, defaultvalue(CurrentCusomizableCredentials)] enum

CustomizableCredentialsType type,
[out, retval] ICustomizableCredentials** ppCredentials

);

Parameters

Name Type Meaning

type enum CustomizableCredentialsType What kind of credential set is used.

ppCredentials ICustomizableCredentials** Definition of the credential set used.

InTrust 11.5 SDKReference
Interfaces 110

IMessageFormatCustomInfo
Represents a customizable script-based message formatter used for event forwarding.

Methods
Data (getter)
Returns the custom script that implements the functionality of the formatter.

Syntax

HRESULT Data(
[out, retval] BSTR* bstrData

);

Parameters

Name Type Meaning

bstrData BSTR* Custom script that implements the functionality of the formatter.

Data (setter)
Supplies the custom script that implements the functionality of the formatter.

Syntax

HRESULT Data(
[in] BSTR bstrData

);

Parameters

Name Type Meaning

bstrData BSTR Custom script that implements the functionality of the formatter.

IMessageFormatInfo
Provides access to the formatting configuration for forwarded events.

InTrust 11.5 SDKReference
Interfaces 111

Methods
Name Type Meaning

Name Type Meaning

MessageFormatType
Returns the configuration of message format.

Syntax

HRESULT MessageFormatType(
[out, retval] IMessageFormatTypeInfo** ppMessageFormatTypeInfo

);

Parameter

Name Type Meaning

ppMessageFormatTypeInfo IMessageFormatTypeInfo** Configuration of the message format.

Name
Returns the display name of the message format.

Syntax

HRESULT Name(
[out, retval] BSTR* val

);

Parameter

Name Type Meaning

val BSTR* Display name of the message format.

IMessageFormatTypeInfo
Defines a message format for forwarded events and can be used as a template for creating new formats.

InTrust 11.5 SDKReference
Interfaces 112

Methods
CreateMessageFormat
Returns a new message format item.

Syntax

HRESULT CreateMessageFormat(
[out, retval]IMessageFormatInfo** ppMessageFormat

);

Parameters

Name Type Meaning

ppMessageFormat IMessageFormatInfo** New message format for forwarded events.

GUID
Returns the GUID of the message format.

Syntax

HRESULT GUID(
[out, retval] BSTR* GUID

);

Parameters

Name Type Meaning

GUID BSTR* GUID of the message format.

IsCustomizable
Returns whether this is a customizable script-based message format.

Syntax

HRESULT IsCustomizable(
[out, retval] VARIANT_BOOL* val

);

Parameters

Name Type Meaning

val VARIANT_BOOL* Whether this is a customizable script-based message format.

InTrust 11.5 SDKReference
Interfaces 113

Name
Returns the display name of the message format.

Syntax

HRESULT Name(
[out, retval] BSTR* val

);

Parameters

Name Type Meaning

val BSTR* Display name of the message format.

IMessageFormatTypeInfoCollection
Provides a collection of all message format types supported by InTrust event forwarding.

Methods
_NewEnum
Returns an enumerator for the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Item
Gets a message format type from the collection by GUID.

InTrust 11.5 SDKReference
Interfaces 114

Syntax

HRESULT Item(
[in] BSTR GUID,
[out, retval] IMessageFormatTypeInfo**

);

Parameters

Name Type Meaning

GUID BSTR GUID of the message format type.

IMessageFormatTypeInfo** The message format type.

IMicrosoftNetworkSite
Represents an InTrust site of the Microsoft Windows Network type.

Methods
AgentAccessCredentials
Provides access to the credentials used for running the agent service.

Syntax

HRESULT AgentAccessCredentials(
[in, defaultvalue(CurrentCusomizableCredentials)] enum

CustomizableCredentialsType,
[out, retval] ICustomizableCredentials** pCredentials

);

Parameters

Name Type Meaning

enum CustomizableCredentialsType What kind of credential set to use.

pCredentials ICustomizableCredentials** Credential set to use.

DomainEnumeration
Provides access to the choice of domain enumeration method for sites to use.

InTrust 11.5 SDKReference
Interfaces 115

Syntax

HRESULT DomainEnumeration(
[in, defaultvalue(CurrentDomainEnumeration)] enum DomainEnumerationType,
[out, retval] IDomainEnumeration** pDomainEnumeration

);

Parameters

Name Type Meaning

enum DomainEnumerationType What kind of domain enumeration method to use.

pDomainEnumeration IDomainEnumeration** Choice of domain enumeration mechanism.

InstallAgentsAutomatically (getter)
Returns whether automatic installation of agents on the site computers is enabled.

Syntax

HRESULT InstallAgentsAutomatically(
[out, retval] VARIANT_BOOL* pInstallAutomatically

);

Parameter

Name Type Meaning

pInstallAutomatically VARIANT_
BOOL*

Whether automatic installation of agents on the site computers is
enabled.

InstallAgentsAutomatically (setter)
Sets whether automatic installation of agents on the site computers is enabled.

Syntax

HRESULT InstallAgentsAutomatically(
[in] VARIANT_BOOL pInstallAutomatically

);

Parameter

Name Type Meaning

pInstallAutomatically VARIANT_
BOOL

Whether automatic installation of agents on the site computers is
enabled.

SiteAccessCredentials
Provides access to the credentials used for site enumeration and installation of agents on site computers.

InTrust 11.5 SDKReference
Interfaces 116

Syntax

HRESULT SiteAccessCredentials(
[in, defaultvalue(CurrentCusomizableCredentials)] enum

CustomizableCredentialsType,
[out, retval] ICustomizableCredentials** pCredentials

);

Parameters

Name Type Meaning

enum CustomizableCredentialsType What kind of credential set to use.

pCredentials ICustomizableCredentials** Credential set to use.

IMultiRepositorySearcher
A container for search objects that lets you search in all of the specified repositories simultaneously.

CAUTION: This container is optimized for shared use. Therefore, it is strongly recommended that
you create only one IMultiRepositorySearcher and reuse it rather than creating different
IMultiRepositorySearcher instances for different search queries and sets of repositories.

Methods
MakeMultiSearchObject
Creates a search object that uses multiple repositories at once.

Syntax

HRESULT MakeMultiSearchObject(
[in] BSTR rel_query,
[in] SAFEARRAY(IDispatch) psaSeachers,
[out, retval] IObservable** search_object

);

Parameters

Name Type Meaning

rel_query BSTR Search query.

psaSeachers SAFEARRAY(IDispatch) Searcher interfaces for the repositories you want to search in.

search_object IObservable** Interface that provides search functionality.

InTrust 11.5 SDKReference
Interfaces 117

IMultiRepositorySearcherFactory
Creates an instance of IMultiRepositorySearcher.

CreateMultiRepositorySearcher
Creates the IMultiRepositorySearcher.

Syntax

HRESULT CreateMultiRepositorySearcher(
[in] VARIANT eventory_xml,
[out, retval] IMultiRepositorySearcher** rep_searcher

);

Parameters

Name Type Meaning

eventory_
xml

VARIANT String representation of the log knowledge base to use with the multi-
repository searches. To use the fallback knowledge base, specify
null.

rep_
searcher

IMultiRepositorySearcher
**

The searcher interface capable of working with multiple repositories
at once.

IObservable
Defines a provider for push-based notification.

Method
Subscribe

Syntax

HRESULT Subscribe(
[in] IObserver* observer,
[out] ICookie** cookie

);

InTrust 11.5 SDKReference
Interfaces 118

Parameters

Name Type Meaning

observer IObserver* Source of push-based notifications.

cookie ICookie** Keeps the search active while present.

IObserver
Provides a mechanism for receiving push-based notifications. You need to create your own implementation of
this interface.

Methods
OnDone
Notifies the observer that the provider has finished sending push-based notifications.

Syntax

void OnDone();

OnError
Notifies the observer that the provider has experienced an error condition.

Syntax

void OnError(

[in] HRESULT hr,

[in] BSTR description

);

Parameters

Name Type Meaning

hr HRESULT Operation result.

description BSTR Additional information about the error.

OnNext
Provides the observer with new data.

InTrust 11.5 SDKReference
Interfaces 119

Syntax

void OnNext(

[in] IUnknown* data

);

Parameter

Name Type Meaning

data IUnknown* The current notification information.

IOrganizationalUnitSiteObject
Represents an organizational unit from which to put computers in an InTrust site.

Methods
CanonicalName (getter)
Returns the canonical name of the organizational unit.

Syntax

HRESULT CanonicalName(
[out, retval]BSTR* bstrCanonicalName

);

Parameter

Name Type Meaning

bstrCanonicalName BSTR* Canonical name of the organizational unit.

CanonicalName (setter)
Sets the canonical name of the organizational unit.

Syntax

HRESULT CanonicalName(
[in]BSTR bstrCanonicalName

);

InTrust 11.5 SDKReference
Interfaces 120

Parameter

Name Type Meaning

bstrCanonicalName BSTR Canonical name of the organizational unit.

DistinguishedName (getter)
Returns the distinguished name of the organizational unit.

Syntax

HRESULT DistinguishedName(
[out, retval]BSTR* bstrDistinguishedName

);

Parameter

Name Type Meaning

bstrDistinguishedName BSTR* Distinguished name of the organizational unit.

DistinguishedName (setter)
Sets the distinguished name of the organizational unit.

Syntax

HRESULT DistinguishedName(
[in]BSTR bstrDistinguishedName

);

Parameter

Name Type Meaning

bstrDistinguishedName BSTR Distinguished name of the organizational unit.

Domain (getter)
Returns the domain of the organizational unit.

Syntax

HRESULT Domain(
[out, retval]BSTR* bstrDomain

);

InTrust 11.5 SDKReference
Interfaces 121

Parameter

Name Type Meaning

bstrDomain BSTR* Domain of the organizational unit.

Domain (setter)
Sets the domain of the organizational unit.

Syntax

HRESULT Domain(
[in]BSTR bstrDomain

);

Parameter

Name Type Meaning

bstrDomain BSTR Domain of the organizational unit.

IProperty
Represents a property attached to an InTrust repository. A property is a way to tag repositories for
arbitrary purposes.

Methods
PropertyName (setter)
Sets the name of the property.

Syntax

HRESULT PropertyName(
[in] BSTR pVal

);

Parameter

Name Type Meaning

pVal BSTR Name of the property. The name must be unique in the property collection (see
IPropertyCollection).

InTrust 11.5 SDKReference
Interfaces 122

PropertyValue (getter)
Returns the value of the property.

Syntax

HRESULT PropertyValue(
[out, retval] VARIANT *pVal

);

Parameter

Name Type Meaning

pVal VARIANT* Value of the property.

PropertyValue (setter)
Sets the value of the property.

Syntax

HRESULT PropertyValue(
[in] VARIANT pVal

);

Parameter

Name Type Meaning

pVal VARIANT Value of the property.

PropertyName
Returns the name of the property.

NOTE: There is no setter method for the name of a property. Instead of renaming an existing property,
you need to create a new one in the property collection (IPropertyCollection) and assign it the value you
need. The old property can be deleted using the collection's Remove method.

Syntax

HRESULT PropertyName(
[out, retval] BSTR *pVal

);

Parameter

Name Type Meaning

pVal BSTR* Name of the property.

InTrust 11.5 SDKReference
Interfaces 123

IPropertyCollection
Represents a collection of properties associated with an InTrust repository. Access to the collections is gained
through specialized methods of the IInTrustRepository3 interface (such as CustomAttributes and
ForwardingProperties), which filter the available properties by purpose.

Methods
Item
Gets a property from the collection by name.

Syntax

HRESULT Item(
[in] BSTR bstrPropertyName,
[out, retval] IProperty** ppProperty

);

Parameters

Name Type Meaning

bstrPropertyName BSTR Name of the property. This name must exist in the collection.

ppProperty IProperty** The property.

_NewEnum
Returns an enumerator for the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameters

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Set
Sets the specified property if it exists or creates it if it doesn't.

InTrust 11.5 SDKReference
Interfaces 124

Syntax

HRESULT Set(
[in] BSTR bstrPropertyName,

[in] VARIANT varPropertyValue
);

Parameters

Name Type Meaning

bstrPropertyName BSTR Name of the property to add. The name must be unique.

varPropertyValue BSTR The value to set.

Remove
Removes a property from the collection by name.

Syntax

HRESULT Remove(
[in] BSTR bstrPropertyName

);

Parameter

Name Type Meaning

bstrPropertyName BSTR Name of the property to remove.

IRepositoryRecordInserter
Provides write access to the repository that it is associated with and manages one or more
IRepositoryRecordInserterLight interfaces, which do the actual writing. For each
IRepositoryRecordInserterLight, it also stores predefined field values that are the same in all records written by
that IRepositoryRecordInserterLight.
Incoming records are pushed to the repository at regular intervals. However, you can force an immediate write
by calling the Commit method.

Methods
BindFields
Sets the values of the path-specifying fields for records that will be written to the same repository file.

Syntax

HRESULT BindFields(

InTrust 11.5 SDKReference
Interfaces 125

[in] tags path,

[out, retval] IRepositoryRecordInserterLight**

);

Parameters

Name Type Meaning

path tags The field record values that you specify here are supposed to be
the same for all records generated by the
IRepositoryRecordInserterLight that will be initialized.

IRepositoryRecordInserterLight
**

Record-inserting interface with some record field values
predefined.

PutRecords
Writes the specified records to the repository asynchronously.

Syntax

HRESULT PutRecords(

[in] SAFEARRAY(struct record) records

);

Parameter

Name Type Meaning

records SAFEARRAY(struct record) Records to put in the repository.

PutRecords2
Writes the specified records to the repository asynchronously. This method is similar to PutRecords, except the
type of the input parameter. Using the IBulkRecord interface for input makes it possible to write event records
converted by IEventToRecordFormatter. For details, see Event Record Data Structures.

Syntax

HRESULT PutRecords2(

[in] IBulkRecord* pBulkRecord

);

InTrust 11.5 SDKReference
Interfaces 126

Parameter

Name Type Meaning

records IBulkRecord* pBulkRecord Records (normally, converted from events) to put in the repository.

Commit
Performs all deferred record writes synchronously.

CAUTION: This operation is resource-intensive and should not be used needlessly. For example,
committing after each record is strongly discouraged. InTrust commits records automatically every
60 seconds.
Forcing a commit is acceptable in situations like the following:

l You need to confirm that a batch of events or records has safely arrived in the repository.

l You are writing events or records out of order. See the corresponding note in Writing Events.

Syntax

HRESULT Commit();

Return Values

Name Value Meaning

ITRT_E_COMMIT_TO_INTERMEDIATE_
STORE_FAILED

0x8ADD1002 Cannot commit records to intermediate store
on InTrust server.

ITRT_E_COMMIT_TO_REPOSITORY_
FAILED

0x8ADD1003 Cannot commit records to repository.

ITRT_E_COMMIT_IN_PROGRESS 0x8ADD1004 Commit is still in progress.

IRepositoryRecordInserter2
Provides write access to the repository that it is associated with and manages one or more
IRepositoryRecordInserterLight interfaces, which do the actual writing. For each
IRepositoryRecordInserterLight, it also stores predefined field values that are the same in all records written by
that IRepositoryRecordInserterLight.
Incoming records are pushed to the repository at regular intervals. However, you can force an immediate write
by calling the Commit method.

Methods
BindFields
Sets the values of the path-specifying fields for records that will be written to the same repository file.

InTrust 11.5 SDKReference
Interfaces 127

Syntax

HRESULT BindFields(

[in] tags path,

[out, retval] IRepositoryRecordInserterLight**

);

Parameters

Name Type Meaning

path tags The field record values that you specify here are supposed to be
the same for all records generated by the
IRepositoryRecordInserterLight that will be initialized.

IRepositoryRecordInserterLight
**

Record-inserting interface with some record field values
predefined.

PutRecords
Writes the specified records to the repository asynchronously.

Syntax

HRESULT PutRecords(

[in] SAFEARRAY(struct record) records

);

Parameter

Name Type Meaning

records SAFEARRAY(struct record) Records to put in the repository.

PutRecords2
Writes the specified records to the repository asynchronously. This method is similar to PutRecords, except the
type of the input parameter. Using the IBulkRecord interface for input makes it possible to write event records
converted by IEventToRecordFormatter. For details, see Event Record Data Structures.

Syntax

HRESULT PutRecords2(

[in] IBulkRecord* pBulkRecord

);

InTrust 11.5 SDKReference
Interfaces 128

Parameter

Name Type Meaning

records IBulkRecord* pBulkRecord Records (normally, converted from events) to put in the repository.

Commit
Performs all deferred record writes synchronously.

CAUTION: This operation is resource-intensive and should not be used needlessly. For example,
committing after each record is strongly discouraged. InTrust commits records automatically every
60 seconds.
Forcing a commit is acceptable in situations like the following:

l You need to confirm that a batch of events or records has safely arrived in the repository.

l You are writing events or records out of order. See the corresponding note in Writing Events.

Syntax

HRESULT Commit();

Return Values

Name Value Meaning

ITRT_E_COMMIT_TO_INTERMEDIATE_
STORE_FAILED

0x8ADD1002 Cannot commit records to intermediate store
on InTrust server.

ITRT_E_COMMIT_TO_REPOSITORY_
FAILED

0x8ADD1003 Cannot commit records to repository.

ITRT_E_COMMIT_IN_PROGRESS 0x8ADD1004 Commit is still in progress.

Commit2
Performs deferred record writes. This method either submits records to a queue on the server or puts them
directly in the repository, depending on the argument. Using
RepositoryCommitType::ToRepositoryRepositoryCommitType as the argument is equivalent to calling the
Commit method.

CAUTION: Direct writes to the repository are resource-intensive and should not be used needlessly.
For example, committing after each record is strongly discouraged. InTrust commits records
automatically every 60 seconds.
Forcing a commit is acceptable in situations like the following:

l You need to confirm that a batch of events or records has safely arrived in the repository.

l You are writing events or records out of order. See the corresponding note in Writing Events.

Syntax

HRESULT Commit2(
[in, defaultvalue(ToRepositoryRepositoryCommitType)] RepositoryCommitType

InTrust 11.5 SDKReference
Interfaces 129

commitType
);

Parameter

Name Type Meaning

commitType RepositoryCommitType Whether to queue the committed records on the server or put them
directly in the repository.

Return Values if RepositoryCommitType::ToRepositoryRepositoryCommitType is Used

Name Value Meaning

ITRT_E_COMMIT_TO_INTERMEDIATE_
STORE_FAILED

0x8ADD1002 Cannot commit records to intermediate store
on InTrust server.

ITRT_E_COMMIT_TO_REPOSITORY_
FAILED

0x8ADD1003 Cannot commit records to repository.

ITRT_E_COMMIT_IN_PROGRESS 0x8ADD1004 Commit is still in progress.

IRepositoryRecordInserterLight
Generates valid record structures from predefined and significant values and writes them to the repository.

NOTE:IRepositoryRecordInserterLight or IRepositoryRecordInserter: when to use which?
Use IRepositoryRecordInserterLight if you need to write large numbers of records with coinciding values
in specific fields. Otherwise, using IRepositoryRecordInserter should be more efficient.

Method
PutRecords

Syntax

HRESULT PutRecords(

[in] SAFEARRAY(struct contents) recordFields

);

Parameter

Name Type Meaning

recordFields SAFEARRAY
(struct
contents)

Field value structures to convert to records. Missing fields will be filled in based
on the tags structure instance associated with this
IRepositoryRecordInserterLight.

InTrust 11.5 SDKReference
Interfaces 130

IScript
Represents a script used in InTrust operations.

Methods
Description (getter)
Returns the description of the script.

Syntax

HRESULT Description(
[out, retval] BSTR* description

);

Parameter

Name Type Meaning

description BSTR* Description of the script.

Description (setter)
Sets the description of the script.

Syntax

HRESULT Description(
[in] BSTR description

);

Parameter

Name Type Meaning

description BSTR Description of the script.

ID
Returns the ID of the script.

Syntax

HRESULT ID(
[out, retval] BSTR* pID

);

InTrust 11.5 SDKReference
Interfaces 131

Parameter

Name Type Meaning

pID BSTR* ID of the script.

Language (getter)
Returns which language the script is in.

Syntax

HRESULT Language(
[out, retval] enum ScriptLanguage* language

);

Parameter

Name Type Meaning

language enum ScriptLanguage* Which language the script is in.

Language (setter)
Sets which language the script is in.

Syntax

HRESULT Language(
[in] enum ScriptLanguage language

);

Parameter

Name Type Meaning

language enum ScriptLanguage Which language the script is in.

Name (getter)
Returns the name of the script.

Syntax

HRESULT Name(
[out, retval] BSTR *name

);

InTrust 11.5 SDKReference
Interfaces 132

Parameter

Name Type Meaning

name BSTR* Name of the script.

Name (setter)
Sets the name of the script.

Syntax

HRESULT Name(
[in] BSTR name

);

Parameter

Name Type Meaning

name BSTR Name of the script.

Parameters
Provides access to a collection of the script's parameters.

Syntax

HRESULT Parameters(
[out, retval] IScriptParameterCollection** ppParameters

);

Parameter

Name Type Meaning

ppParameters IScriptParameterCollection** Collection of the script's parameters.

Script (getter)
Returns the script source code.

Syntax

HRESULT Script(
[out, retval] BSTR* script

);

InTrust 11.5 SDKReference
Interfaces 133

Parameter

Name Type Meaning

script BSTR* Script source code.

Script (setter)
Overwrites the script source code.

Syntax

HRESULT Script(
[in] BSTR script

);

Parameters

Name Type Meaning

script BSTR Script source code.

IScriptArgument
Represents an argument used with an InTrust site enumeration script.

Methods
Description
Returns the description of the argument.

Syntax

HRESULT Description(
[out, retval] BSTR* description

);

Parameter

Name Type Meaning

description BSTR* Description of the argument.

InTrust 11.5 SDKReference
Interfaces 134

ID
Returns the ID of the argument.

Syntax

HRESULT ID(
[out, retval] BSTR* pID

);

Parameter

Name Type Meaning

pID BSTR* ID of the argument.

IsCustom
Returns whether this is a custom argument.

Syntax

HRESULT IsCustom(
[out, retval] VARIANT_BOOL* bIsCustom

);

Parameter

Name Type Meaning

bIsCustom VARIANT_BOOL* Whether this is a custom argument.

Name
Returns the name of the argument.

Syntax

HRESULT Name(
[out, retval] BSTR *name

);

Parameter

Name Type Meaning

name BSTR* Name of the argument.

Value (getter)
Returns the value of the argument.

InTrust 11.5 SDKReference
Interfaces 135

Syntax

HRESULT Value(
[out, retval] BSTR* value

);

Parameter

Name Type Meaning

value BSTR* Value of the argument.

Value (setter)
Sets the value of the argument.

Syntax

HRESULT Value(
[in] BSTR value

);

Parameter

Name Type Meaning

value BSTR Value of the argument.

IScriptArgumentCollection
Represents the arguments defined for an InTrust script.

Methods
_NewEnum
Returns an enumerator for the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

InTrust 11.5 SDKReference
Interfaces 136

Parameter

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Item
Gets an argument from the collection by name.

Syntax

HRESULT Item(
[in] BSTR bstrArgumentName,
[out, retval] IScriptArgument** ppArgument

);

Parameters

Name Type Meaning

bstrArgumentName BSTR Name of the argument

ppArgument IScriptArgument** The returned argument.

IScriptParameter
Represents a customizable parameter defined for an InTrust script.

Methods
DefaultValue (getter)
Returns the default value of the parameter.

Syntax

HRESULT DefaultValue(
[out, retval] BSTR* bstrDefaultValue

);

Parameter

Name Type Meaning

bstrDefaultValue BSTR* Default value of the parameter.

InTrust 11.5 SDKReference
Interfaces 137

DefaultValue (setter)
Sets the default value for the parameter.

Syntax

HRESULT DefaultValue(
[in] BSTR bstrDefaultValue

);

Parameter

Name Type Meaning

bstrDefaultValue BSTR Default value of the parameter.

Description (getter)
Returns the description of the parameter.

Syntax

HRESULT Description(
[out, retval] BSTR* bstrDescription

);

Parameter

Name Type Meaning

bstrDescription BSTR* Description of the parameter.

Description (setter)
Sets the description of the parameter.

Syntax

HRESULT Description(
[in] BSTR bstrDescription

);

Parameter

Name Type Meaning

bstrDescription BSTR Description of the parameter.

ID
Returns the ID of the script parameter.

InTrust 11.5 SDKReference
Interfaces 138

Syntax

HRESULT ID(
[out, retval] BSTR* bstrID

);

Parameter

Name Type Meaning

bstrID BSTR* ID of the script parameter.

Name (getter)
Returns the name of the parameter.

Syntax

HRESULT Name(
[out, retval] BSTR* bstrName

);

Parameter

Name Type Meaning

bstrName BSTR* Name of the parameter.

Name (setter)
Sets the name of the parameter.

Syntax

HRESULT Name(
[in] BSTR bstrName

);

Parameter

Name Type Meaning

bstrName BSTR Name of the parameter.

IScriptParameterCollection
Represents the parameters defined for an InTrust script.

InTrust 11.5 SDKReference
Interfaces 139

Methods
_NewEnum
Returns an enumerator for the collection.

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Add
Adds a parameter to the collection.

Syntax

HRESULT Add(
[out, retval] IScriptParameter** ppParameter

);

Parameters

Name Type Meaning

ppParameter IScriptParameter** Parameter to add to the collection.

Item
Gets a parameter from the collection by name.

Syntax

HRESULT Item(
[in] BSTR bstrParameterName,
[out, retval] IScriptParameter** ppParameter

);

Parameters

Name Type Meaning

bstrParameterName BSTR Name of the parameter.

InTrust 11.5 SDKReference
Interfaces 140

Name Type Meaning

ppParameter IScriptParameter** The returned parameter.

Remove
Removes the parameter with the specified name from the collection.

Syntax

HRESULT Remove(
[in] BSTR bstrParameterName

);

Parameter

Name Type Meaning

bstrParameterName BSTR Name of the parameter to remove.

ISite
Represents an InTrust site, which can be a regular site visible in InTrust Manager or a hidden internal site
associated with a collection visible in InTrust Deployment Manager.
To work with methods that are specific to sites of the Microsoft Windows Network type, cast this to
IMicrosoftNetworkSite

Methods
Description (getter)
Returns the description of the site.

Syntax

HRESULT Description(
[out, retval]BSTR* bstrDescription

);

Parameter

Name Type Meaning

bstrDescription BSTR* Description of the site.

Description (setter)
Sets the description of the site.

InTrust 11.5 SDKReference
Interfaces 141

Syntax

HRESULT Description(
[in]BSTR bstrDescription

);

Parameter

Name Type Meaning

bstrDescription BSTR Description of the site.

EnumerationPeriod (getter)
Returns the interval (in hours) between site enumerations that refresh the site membership.

Syntax

HRESULT EnumerationPeriod(
[out, retval] long* pEnumerationPeriod

);

Parameter

Name Type Meaning

pEnumerationPeriod long* Interval (in hours) between site enumerations that refresh the site membership.

EnumerationPeriod (setter)
Sets the interval (in hours) between site enumerations that refresh the site membership.

Syntax

HRESULT EnumerationPeriod(
[in] long enumerationPeriod

);

Parameter

Name Type Meaning

pEnumerationPeriod long Interval (in hours) between site enumerations that refresh the site membership.

ID
Returns the ID of the site.

InTrust 11.5 SDKReference
Interfaces 142

Syntax

HRESULT ID(
[out, retval] BSTR* pID

);

Parameter

Name Type Meaning

pID BSTR* ID of the site.

Name (getter)
Returns the name of the site.

Syntax

HRESULT Name(
[out, retval] BSTR* bstrName

);

Parameter

Name Type Meaning

bstrName BSTR* Name of the site.

Name (setter)
Sets the name of the site.

Syntax

HRESULT Name(
[in]BSTR bstrName

);

Parameter

Name Type Meaning

bstrName BSTR Name of the site.

Server (getter)
Returns the InTrust server that manages the site.

InTrust 11.5 SDKReference
Interfaces 143

Syntax

HRESULT Server(
[out, retval] IInTrustServer3** ppServer

);

Parameter

Name Type Meaning

ppServer IInTrustServer3** InTrust server that manages the site.

Server (setter)
Sets the InTrust server that manages the site.

Syntax

HRESULT Server(
[in] IInTrustServer3* pServer

);

Parameter

Name Type Meaning

pServer IInTrustServer3* InTrust server that manages the site.

SiteObjects
Provides access to the collection of objects in the site.

Syntax

HRESULT SiteObjects(
[out, retval] ISiteObjectCollection** pSiteObjects

);

Parameter

Name Type Meaning

pSiteObjects ISiteObjectCollection** Collection of objects in the site.

Type
Returns the type of the site.

InTrust 11.5 SDKReference
Interfaces 144

Syntax

HRESULT Type(
[out, retval] enum SiteType* pSiteType

);

Parameter

Name Type Meaning

pSiteType enum SiteType* Type of the site.

ISiteComputer
Represents a computer that is included in an InTrust site.

Methods
AccessName
Returns the access name of the computer. This is either the IP address or the same as the name returned by the
OriginalName method.

Syntax

HRESULT AccessName(
[out, retval] BSTR* pbstrName

);

Parameter

Name Type Meaning

pbstrName BSTR* Access name of the computer.

AgentID
Returns the ID of the agent installed on the computer.

Syntax

HRESULT AgentID(
[out, retval] BSTR* pbstrAgentID

);

InTrust 11.5 SDKReference
Interfaces 145

Parameter

Name Type Meaning

pbstrAgentID BSTR* ID of the agent installed on the computer.

Alive
Returns whether the computer is treated as active by the InTrust server.

Syntax

HRESULT Alive(
[out, retval] VARIANT_BOOL* pvbAlive

);

Parameter

Name Type Meaning

pvbAlive VARIANT_BOOL* Whether the computer is treated as active by the InTrust server.

IPAddress
Returns the IP address of the computer.

Syntax

HRESULT IPAddress(
[out, retval] long* lIP

);

Parameter

Name Type Meaning

lIP long* IP address of the computer.

Name
Returns the name of the computer, as shown, for example, in the system properties in Windows.

Syntax

HRESULT Name(
[out, retval] BSTR* pbstrName

);

InTrust 11.5 SDKReference
Interfaces 146

Parameter

Name Type Meaning

pbstrName BSTR* Name of the computer.

OfficialHostName
Returns the official host name of the computer. This is either the FQDN or the canonical name, whichever is the
result of resolving the name.

Syntax

HRESULT OfficialHostName(
[out, retval] BSTR* pbstrName

);

Parameter

Name Type Meaning

pbstrName BSTR* Official host name of the computer.

OriginalName
Returns the original name of the computer. This is the name that was originally provided by the user for adding
the computer to the site.

Syntax

HRESULT OriginalName(
[out, retval] BSTR* pbstrName

);

Parameter

Name Type Meaning

pbstrName BSTR* Original name of the computer.

Status
Returns the current status of the computer.

Syntax

HRESULT Status(
[out, retval] BSTR* pbstrName

);

InTrust 11.5 SDKReference
Interfaces 147

Parameter

Name Type Meaning

pbstrName BSTR* Current status of the computer.

ISiteIndexBuilder
Represents the distributed indexing configuration for a repository.

Methods
IndexAccess
Provides access to the security settings for distributed indexing of the repository.

Syntax

HRESULT IndexBuilderAccessCredentials(
[in, defaultvalue(CurrentCusomizableCredentials)] enum

CustomizableCredentialsType,
[out, retval] ICustomizableCredentials** pCredentials

);

Parameters

Name Type Meaning

enum
CustomizableCredentialsType

pCredentials ICustomizableCredentials** Security settings for distributed indexing of the
repository.

SiteId (getter)
Returns the ID of the InTrust site whose agents must perform distributed indexing operations.

Syntax

HRESULT SiteId(
[out, retval] BSTR* siteId

);

InTrust 11.5 SDKReference
Interfaces 148

Parameter

Name Type Meaning

siteId BSTR* ID of the InTrust site whose agents must perform distributed indexing operations.

SiteId (setter)
Specifies the ID of the InTrust site whose agents must perform distributed indexing operations.

Syntax

HRESULT SiteId(
[in] BSTR siteId

);

Parameter

Name Type Meaning

siteId BSTR ID of the InTrust site whose agents must perform distributed indexing operations.

IndexBuilderAccess
Provides access to the security settings for performing repository indexing.

Syntax

HRESULT IndexBuilderAccess(
[in, defaultvalue(CurrentIndexBuilderAccess)] enum IndexBuilderAccessType,
[out, retval] IIndexBuilderAccess** pIndexPathType

);

Parameters

Name Type Meaning

enum IndexBuilderAccessType What kind of account is used for repository indexing.

pIndexPathType IIndexBuilderAccess** Security settings for performing repository indexing.

ISiteObject
Represents a computer-specifying object that can be included in an InTrust site. Sites can be populated by
indicating computers in a variety of ways, including IP ranges and Active DIrectory domains.

InTrust 11.5 SDKReference
Interfaces 149

Methods
Type
Returns the type of the site object.

Syntax

HRESULT Type(
[out, retval]enum SiteObjectType* type

);

Parameter

Name Type Meaning

type enum SiteObjectType* Type of the site object.

ID
Returns the ID of the site object.

Syntax

HRESULT ID(
[out, retval] BSTR* pID

);

Parameter

Name Type Meaning

pID BSTR* ID of the site object.

ISiteObjectCollection
Represents the computer-specifying objects included in a site. Sites can be populated by indicating computers
in a variety of ways, including IP ranges and Active DIrectory domains.

Methods
_NewEnum
Returns an enumerator for the collection.

InTrust 11.5 SDKReference
Interfaces 150

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Add
Adds a site object to the collection.

Syntax

HRESULT Add(
[in] enum SiteObjectType objectType,
[out, retval] ISiteObject** ppSiteObject

);

Parameters

Name Type Meaning

objectType enum SiteObjectType What kind of site object to add.

ppSiteObject ISiteObject** The site object to add to the collection.

Item
Gets a site object from the collection by ID.

Syntax

HRESULT Item(
[in] BSTR siteObjectId,
[out, retval] ISiteObject** ppSiteObject

);

Parameters

Name Type Meaning

siteObjectId BSTR ID of the site object to get.

ppSiteObject ISiteObject** The returned site object.

InTrust 11.5 SDKReference
Interfaces 151

Remove
Removes the specified site object from the collection.

Syntax

HRESULT Remove(
[in] BSTR bstrSiteObject

);

Parameter

Name Type Meaning

bstrSiteObject BSTR The site object to remove.

ITask2
Represents a subset of the configuration of an InTrust scheduled task.

Method
TaskCredentials
Provides access to the credentials used for running the task.

Syntax

HRESULT TaskCredentials(
[in, defaultvalue(CurrentCusomizableCredentials)] enum

CustomizableCredentialsType type,
[out, retval] ICustomizableCredentials** ppCredentials

);

Parameters

Name Type Meaning

type enum CustomizableCredentialsType What kind of credential set is used.

ppCredentials ICustomizableCredentials** Credentials for running the task.

InTrust 11.5 SDKReference
Interfaces 152

ITransportInfo
Represents a transport type supported by InTrust event forwarding.

Methods
GUID
Returns the GUID of the transport type.

Syntax

HRESULT GUID(
[out, retval] BSTR* GUID

);

Parameter

Name Type Meaning

GUID BSTR* GUID of the transport type.

Name
Returns the display name of the transport type.

Syntax

HRESULT Name(
[out, retval] BSTR* val

);

Parameter

Name Type Meaning

val BSTR* Display name of the transport type.

ITransportInfoCollection
Provides a collection of all transport types supported by InTrust event forwarding.

Methods
_NewEnum
Returns an enumerator for the collection.

InTrust 11.5 SDKReference
Interfaces 153

Syntax

HRESULT _NewEnum(
[out, retval] LPUNKNOWN* pVal

);

Parameter

Name Type Meaning

pVal LPUNKNOWN* Collection enumerator.

Item
Gets a transport type from the collection by GUID.

Syntax

HRESULT Item(
[in] BSTR GUID,
[out, retval] ITransportInfo**

);

Parameters

Name Type Meaning

GUID BSTR GUID of the transport type.

ITransportInfo** The transport type.

InTrust 11.5 SDKReference
Interfaces 154

About us

We are more than just a name
We are on a quest to make your information technology work harder for you. That is why we build community-
driven software solutions that help you spend less time on IT administration and more time on business
innovation. We help you modernize your data center, get you to the cloud quicker and provide the expertise,
security and accessibility you need to grow your data-driven business. Combined with Quest’s invitation to the
global community to be a part of its innovation, and our firm commitment to ensuring customer satisfaction, we
continue to deliver solutions that have a real impact on our customers today and leave a legacy we are proud of.
We are challenging the status quo by transforming into a new software company. And as your partner, we work
tirelessly to make sure your information technology is designed for you and by you. This is our mission, and we
are in this together. Welcome to a new Quest. You are invited to Join the Innovation™.

Our brand, our vision. Together.
Our logo reflects our story: innovation, community and support. An important part of this story begins with the
letter Q. It is a perfect circle, representing our commitment to technological precision and strength. The space in
the Q itself symbolizes our need to add the missing piece — you — to the community, to the new Quest.

Contacting Quest
For sales or other inquiries, visit www.quest.com/contact.

Technical support resources
Technical support is available to Quest customers with a valid maintenance contract and customers who have
trial versions. You can access the Quest Support Portal at https://support.quest.com.
The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours
a day, 365 days a year. The Support Portal enables you to:

l Submit and manage a Service Request

l View Knowledge Base articles

l Sign up for product notifications

l Download software and technical documentation

l View how-to-videos

l Engage in community discussions

l Chat with support engineers online

l View services to assist you with your product

InTrust 11.5 SDKReference
About us 155

https://www.quest.com/contact
https://support.quest.com/

	InTrust SDK Overview
	Requirements
	Required Permissions
	Standalone Setup
	Configuring C# References

	Repository Services API
	Connecting to a Repository
	Overview of Repository Access
	Examples
	Details

	Getting and Putting Data
	Overview
	Writing
	Reading
	Getting Records
	Example (C#)

	Getting Events
	Example (C#)
	Composing REL Queries
	Searchable Event and Record Fields

	Writing Records
	Approach 1: Writing Whole Record Structures
	Approach 2: Splitting Records for Writing
	Example (C#)

	Writing Events
	Sort Order for Writing
	Out-of-Order Writing

	Repository Record Data Structures
	tags
	contents
	contents2
	record
	record2
	Recommendations on Setting Tags

	Event Record Data Structures
	base_event
	event_with_read_extensions
	named_string
	insertion_string
	augmented_insertion_string
	event_with_extensions
	event_with_extensions2
	resolved_string

	Creating and Removing Repositories
	Working with Repository Properties
	Using Custom Attributes
	Example (C#)

	Log Knowledge Base API
	Example
	Log Transformation Rule Format

	Enumerations
	CustomizableCredentialsType
	DomainEnumerationType
	IndexBuilderType
	IndexLocationType
	RepositoryCommitType
	ScriptLanguage
	SiteCollectionType
	SiteObjectType
	SiteType

	Interfaces
	IActiveDirectorySiteSiteObject
	Methods

	IBulkEventWithReadExtensions
	Method

	IBulkRecord
	Method

	IBulkRecord2
	Method

	IComputerListDomainEnumeration
	Methods

	IComputerListFileSiteObject
	Methods

	IComputerSiteObject
	Methods

	ICookie
	Method

	ICredentials
	Methods

	ICustomIndexLocation
	Methods

	ICustomCredentials
	Method

	ICustomizableCredentials
	Method

	IDomainEnumeration
	Method

	IDomainSiteObject
	Methods

	IEnumerationScriptSiteObject
	Methods

	IEventToRecordFormatter
	Method

	IForwardingFilterCollection
	Methods

	IForwardingSettings
	Methods

	IIdleRepository
	Method

	IIdleRepositoryFactory
	Method

	IIndexBuilder
	Method

	IIndexingSettings
	Methods

	IIndexLocation
	Method

	IIndexManager
	Methods

	IIndexManagerFactory
	Methods

	IInTrustEnvironment
	Methods

	IInTrustEnvironment3
	Methods

	IInTrustEventory
	Methods

	IInTrustEventoryItem
	Methods

	IInTrustEventoryItemCollection
	Methods

	IInTrustOrganization
	Methods

	IInTrustOrganization3
	Methods

	IInTrustOrganizationCollection
	Methods

	IInTrustRepository3
	Methods

	IInTrustRepositoryCollection2
	Methods

	IInTrustRepositorySearcher
	Method

	IInTrustScriptCollection
	Methods

	IInTrustServer
	Methods

	IInTrustServer3
	Methods

	IInTrustServerCollection
	Methods

	IInTrustServerForwardingSupport
	Methods

	IInTrustSiteCollection
	Methods

	IIPAddressRangeSiteObject
	Methods

	IJob2
	Method

	IMessageFormatCustomInfo
	Methods

	IMessageFormatInfo
	Methods

	IMessageFormatTypeInfo
	Methods

	IMessageFormatTypeInfoCollection
	Methods

	IMicrosoftNetworkSite
	Methods

	IMultiRepositorySearcher
	Methods

	IMultiRepositorySearcherFactory
	IObservable
	Method

	IObserver
	Methods

	IOrganizationalUnitSiteObject
	Methods

	IProperty
	Methods

	IPropertyCollection
	Methods

	IRepositoryRecordInserter
	Methods

	IRepositoryRecordInserter2
	Methods

	IRepositoryRecordInserterLight
	Method

	IScript
	Methods

	IScriptArgument
	Methods

	IScriptArgumentCollection
	Methods

	IScriptParameter
	Methods

	IScriptParameterCollection
	Methods

	ISite
	Methods

	ISiteComputer
	Methods

	ISiteIndexBuilder
	Methods

	ISiteObject
	Methods

	ISiteObjectCollection
	Methods

	ITask2
	Method

	ITransportInfo
	Methods

	ITransportInfoCollection
	Methods

	About us
	Contacting Quest
	Technical support resources

