Quest

Quest® InTrust 11.6.0

SDK Reference

© 2023 Quest Software Inc. ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a
software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the
applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use without the written
permission of Quest Software Inc.

The information in this document is provided in connection with Quest Software products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest
Software products. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE
AGREEMENT FOR THIS PRODUCT, QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO
EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN
IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the
right to make changes to specifications and product descriptions at any time without notice. Quest Software does not make any
commitment to update the information contained in this document.

If you have any questions regarding your potential use of this material, contact:
Quest Software Inc.

Attn: LEGAL Dept

4 Polaris Way

Aliso Viejo, CA 92656

Refer to our Web site (https://www.quest.com) for regional and international office information.
Patents

Quest Software is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current
information about applicable patents for this product, please visit our website at https://www.quest.com/legal.

Trademarks

Quest, the Quest logo, and Join the Innovation are trademarks and registered trademarks of Quest Software Inc. For a complete
list of Quest marks, visit https://www.quest.com/legal/trademark-information.aspx. All other trademarks and registered
trademarks are property of their respective owners.

Legend

A CAUTION icon indicates potential damage to hardware or loss of data if instructions
are not followed.

i IMPORTANT, NOTE, TIP, MOBILE, or VIDEO: An information icon indicates supporting information.

InTrust SDK Reference
Updated - November 2023
Version-11.6.0

https://www.quest.com/
https://www.quest.com/legal
https://www.quest.com/legal/trademark-information.aspx

Contents

InTrust SDK OVervieW . 8
ReqQUIrEMENES 8
Required PermissiOns .. . 9
StaNAalONE SEtUD .. 9
Configuring C# References 9

Repository Services APl 10
Connecting to a Repository 10

Overview of RepoSitory ACCESS 10
EXaMIDIES . 12
DetailS 12
Gettingand Putting Data 13
OV BIVIBW . 13
NG 14
Reading .. 14
Getting RECOIAS o 15
Example (CH) 16
Getling EVeNts . 16
EXAMIDIE (G o 16
Composing REL QUeries 17
Searchable Eventand Record Fields 18
WItING RECOIAS ... e 21
Approach 1: Writing Whole Record Structures ... 21
Approach 2: Splitting Records for Writing ... 21
EXAMIIE (G o 22
WIHtING VN S 31
SOt Order for WHtiNg ... 31
Out-of-Order Wniting 31
Repository Record Data Structures 31
BB 31
COM NS . 32
COM BN S L 33
PO CONA . 34
FECONT 34
Recommendations on Setting Tags ... 34
Event Record Data Structures ... 35
base Vet . 35
event_with_read_extensions 36
named_SIriNg ... 36
INSertioN SN ... 37
augmented_insertion_String ... 37

InTrust 11.6.0 SDK Reference 3

event_With_exXtensioNs 37

event_With_exXtensioNS2 37
FESOIVEA SIING .o 38
Creating and Removing Repositories 39
Working with Repository Properties ... 39
Using Custom Attributes 40
EXAMIPIE (G oo 41

Log Knowledge Base APl 42
E XAl 42
Log Transformation Rule Format ... 45
Enumerations 47
CustomizableCredentialSTyPe ... 47
DomainENUMEratioON T Y PE . 47
INdeXBUIIdEITY P . 47
IndexXLoCatioN Y Pe ... 48
RepPOSItOrY COMMIt Ty P . 48
SCrip L anNQUAaGE ...l 48
SiteColleCtiON Y P . 48
SO O Ty P .. 49
S T YD 49
INter aC S . . 50
IActiveDirectorySiteSiteObject 55
MethOds o 56
IBulkEventWithReadEXtensions 57
Method 57
IBUIKRECOIA 57
MetnOd 58
IBUIKRECOI 58
et Od 58
IComputerListDomainEnumeration 58
MethOds o 59
IComputerListFileSiteObject 60
Methods o 60
IComputerSIteOb et . 61
MethOdS 61

LG O0KIE . . 62
et Od 62
ICredentials 62
MO .. 62
ICustomindexLocation 63

InTrust 11.6.0 SDK Reference 4

M N OAS 64

ICUStOMCredentials ..o 64
M O 64
ICustomizableCredentials 65
M N Od 65
IDOMaINE UM At ON . 65
M N Od . 66
IDomainSiteOb e Ct . 66
Mt OAS 66
IEnumerationScriptSiteObject 67
Mt OAS 67
IEventToRecordF Oormatter 69
M N Od 69
IForwardingFilterCollection 69
M N OAS 69
IForwardingSettings 70
M N OAS 70
HAlEREPOSHOY . 75
M O 75
[ldleRepositoryFactory 75
M N Od 76
INAEXBUIIAET . 76
M N Od 76
IINdexingSettings 77
M N OAS 77
INAeX L OCatON . 79
M O 79
IINAEXMaANAGET ... 80
M N OAS 80
[IndexManagerFactory 80
M N OAS 80
INTrUS ENVIFONMENt 81
M N OAS 82
INTrUS ENVIFONMEN S 83
M N OAS . 83
INTrUS EVeN Oy 85
M N OAS 85
IInTrustEventoryltem 86
M N OAS 86
[InTrustEventoryltemCollection 87
Mt OUS 87
IINTrustOrganization 89
M N OAS . 89

InTrust 11.6.0 SDK Reference 5

IINTrustOrganizationd .. . 90

MetNOaS 90
[InTrustOrganizationColleCtion 93
M oS 93
INTrustREePOSHONY S L 93
M thOaS 94
IINTrustRepositoryColleCtion2 98
MetNOdS 98
INTrustREPOSHOrY S arCNEr . . 100
M O 101
INTrustScriptC Ol CtiON .. 101
M oS . 101
T rUS S Vel 102
M oS . 103
T rUS S VeI . 103
MethOdS 103
[InTrustServerCollection 105
MetnOaS 105
[InTrustServerForwardingSUPPOrt 106
M oS . 106
INTrustSiteColleCtioN .. 107
M oS . 107
IPAddressRangeSIteObJeCT 108
MethOdS 109
O . 110
M O . 110
IMessageFormatCustomMINfO .. 11
M oS . 111
IMessageFormatinfo ... 111
M oS . 112
IMessageFormatTypeINfO ... 112
MethOdS 112
IMessageFormatTypelnfoCollection 114
MetNOaS 114
IMicrosoftNetworkSite 115
M oS . 115
IMUltiRepositorySearcher 117
M oS . 117
IMultiRepositorySearcherFactory ... 118
ObSservable . 118
Mt Od 119
O DS I O . 119
M oS . 119

InTrust 11.6.0 SDK Reference 6

I0rganizationalUnitSiteObjecCt 120

MetNOaS 120
PO Y o 122
M oS . 122
IPropertyColleCtion 124
M oS . 124
IRepositoryRecordINSerer . 125
MethOdS 125
IREPOSItOrYRECOrdINSEIEr2 . 127
MetNOaS 127
IRepositoryRecordinserterlight 130
M thOd . 130

LS D 131
M oS . 131

LS T P AT GUM BN 134
MethOdS 134
ISCriptArgUMENtCOlIECION . . 136
MetnOaS 137

S D P A A T . 137
M oS . 137
IScriptParameterCollection 140
M oS . 140
DO 141
MethOdS 142

LS C OMIDUL T 145
MetnOaS 145
ISitelndexBuUIlder 148
M oS . 148

LS e O OOt . 150
M oS . 150
ISIte O ECtC Ol ON .. 151
MethOdS 151

T aSK 152
M O . 152
ITraNS PO N O L 153
M oS . 153
ITransportinfoColleCtioN 154
M oS . 154
ADOUt US . 155
Contacting QUES 155
Technical SUPPOM rESOUIMCES 155

InTrust 11.6.0 SDK Reference 7

INTrust SDK Overview

The InTrust SDK makes InTrust functionality available to applications. At this time, the SDK includes the following
components:

o Repository Services API

* Log Knowledge Base API

The InTrust SDK is included in the InTrust Server component and works on any computer where InTrust Server
is deployed.

Requirements

If you want to install the SDK separately from InTrust Server, the computer must meet the following requirements
(similar to the requirements for InTrust Server):

Architecture x64
Operating System Any of the following:
o Microsoft Windows Server 2019
o Microsoft Windows Server 2016
Memory Min. 6GB
Additional Software and o Microsoft .NET Framework 4.6.2 or later, with all updates that are current at
Services the time of this InTrust release

» Microsoft Visual C++ Redistributable, provided in the Redist folder of your
InTrust distribution

To use the InTrust API with old versions of Windows PowerShell (2.0 and earlier), make
sure you configure PowerShell to use the version of the .NET runtime that the SDK requires. For
that, create the powershell.exe.config (or powershell_ise.exe.config) file in the same folder as
powershell.exe (or powershell_ise.exe) file with content like the following:

<?xml version="1.0"?>
<configuration>
<startup uselegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0"/>
<supportedRuntime version="v2.0.50727"/>
</startup>
</configuration>

InTrust 11.6.0 SDK Reference
InTrust SDK Overview

Required Permissions

To be able to use the features of the InTrust SDK, your code must be run under an account that is listed as an
InTrust organization administrator. For details about setting up this privilege, see InTrust Organization
Administrators.

Standalone Setup

To install the InTrust SDK separately from InTrust Server, run the INTRUST_SDK.11.6.0.*.*.msi installation
package provided to you. Itis located in the InTrust\Server folder in your InTrust distribution.

Configuring C# References

To make sure that C# bindings work, enable references to the following COM type libraries:

1. InTrust Environment 1.0 Type Library
2. Repository Record Inserter 1.0 Type Library
3. Repository Services 1.0 Type Library

For each of them, open the properties and set the Embed Interop Types parameter to False.

InTrust 11.6.0 SDK Reference
InTrust SDK Overview

http://support.quest.com/technical-documents/intrust/[%25=CommonVariables.Version%25]/deployment-guide/intrust-configuration/configuring-access-rights/intrust-organization-administrators
http://support.quest.com/technical-documents/intrust/[%25=CommonVariables.Version%25]/deployment-guide/intrust-configuration/configuring-access-rights/intrust-organization-administrators

Repository Services API

This topic describes the API that InTrust provides for repositories. This APl lets you do the following:

Connect to a repository for searching and writing
Get records from a repository by searching
Put records in a repository

Manage repositories:
o Remove (unregister) them

o Create them

o Work with repository properties

The APl is implemented as a collection of COM objects that become available after you have installed the InTrust
SDK. Use the interfaces described in the topics listed below; call the methods of those interfaces for access to
records and repositories.

Connecting to a Repository

Getting Records

Writing Records

Creating and Removing Repositories
Repository Record Data Structures
Event Record Data Structures
Working with Repository Properties

Interfaces

Connecting to a Repository

Use the interfaces listed below for access to an InTrust repository. Once you have gained access, you can search
for records in the repository (see Getting Records) and write records to it (see Writing Records).

Overview of Repository Access

The following diagram shows the relationships between the InTrust SDK's interfaces used for getting access to a
repository. An arrow indicates that an interface returns another interface.

InTrust 11.6.0 SDK Reference
Repository Services API

IInTrustEnvironment3 ——

¥
linTrustOrganizationCollection

h 4

oy LU —» lInTrustServerCollection |

f‘ cast to lInTrustOrganization3 |
/ [
/ !
/ 1 1 /
linTrustRepositoryCollection2 lInTrustServer3 d lidleRepositoryFactory
II T
| , *
\ lInTrustRepository3 lldleRepository
\

Before you can have access to an InTrust repository, you need to initialize the InTrust environment. For that, create
an object that implements the lInTrustEnvironment interface. This object makes the current InTrust organization, its
servers and its repositories available to you. The relationships between these items are as follows:

An InTrust organization provides a single configuration database for one or more InTrust servers.
An InTrust repository is registered with an InTrust organization, and its entry is contained in the configuration
shared by all InTrust servers in the organization.

Specific InTrust servers manage specific repositories but do not “own” them; however, the
organization does.

The lInTrustEnvironment interface provides the environment for working with all available InTrust organizations.
You can use two methods to get the organization you need:

1.

Get a collection of known organizations (Organizations method of the lInTrustEnvironment interface) and
pick the necessary one. This involves working with the lInTrustOrganizationCollection interface. In this case,

organizations are discovered by an Active Directory query.

Connect directly to an InTrust server by name (ConnectToServer method of the lInTrustEnvironment
interface). This involves working with the lInTrustServer interface, which you can use to get the organization

that the serveris in.

Once you have gained access to an organization, use its interface (IInTrustOrganization3) to get a collection of the
repositories in it (IInTrustRepositoryCollection2) and get the repository you are looking for (IInTrustRepository3).
The information above concerns access to regular production repositories. However, a valid file structure with data
can also act as an InTrust repository for the purposes of searching and writing, even if it is not included in InTrust
configuration. Itis called an idle repository. An idle repository has no representation in the InTrust environment, so
you need to construct its interface to gain access. For details, see Creating and Removing Repositories.

InTrust 11.6.0 SDK Reference

Repository Services API 1

Examples

If you know the name of the organization for a specific repository, follow the organization — repository
chain of access:

IInTrustEnvironment intrust environment = new InTrustEnvironment();

IInTrustOrganizationCollection organizations = intrust
environment.Organizations;

IInTrustOrganization3 intrust organization =

organizations.Cast<IInTrustOrganization3>() .Where(x => x.Name == "My
Organization") .First();

IInTrustRepositoryCollection2 repositories = intrust
organization.Repositories2;

IInTrustRepository3 repository = repositories.Cast<IInTrustRepository3>
() .Where(x => x.Name == "My Repository").First();

}

If you only know the name of a server in the organization, follow the server — organization — repository
chain of access:

IInTrustEnvironment intrust environment = new InTrustEnvironment();

IInTrustServer intrust server = intrust environment.ConnectToServer ("My
Server") ;

IInTrustOrganization3 intrust organization = intrust server.Organization as
IInTrustOrganization3;

IInTrustRepositoryCollection2 repositories = intrust
organization.Repositories2;

IInTrustRepository3 repository = repositories.Cast<IInTrustRepository3>
() .Where(x => x.Name == "My Repository").First();

}

Details

Use the following interfaces for repository access and related tasks:

o lInTrustEnvironment

¢ lInTrustOrganizationCollection
e |InTrustOrganization

e lInTrustServerCollection

e lInTrustServer

» lInTrustRepositoryCollection2

o lInTrustRepository3

InTrust 11.6.0 SDK Reference
Repository Services API

Getting and Putting Data

The InTrust repository was originally developed to store event log data, and this dictated the design choices that it is
based on. However, the repository architecture is flexible enough for storing generic records containing arbitrary
key-value pairs. The repository API provides tools for reading and writing both kinds of data.

Importantly, the repository is a document-oriented store. If you need to implement any inter-document relationships,
you need to define them at the document contents level.

Overview

The following diagram shows the relationships between the InTrust SDK's interfaces used for reading and writing
repository data. An arrow indicates that an interface returns another interface. Dashed lines between interfaces
mean they don't return one another, but are used together for particular tasks.

Writing
|IEventToRecordFormatter
i =-- IRepositoryRecordinserterLight
IBulkRecord - T
H
H
.. IRepositoryRecordinserter

— linTrustRepository3 —I

Reading
liInTrustMultiRepositorySearcherFactory (Se archi ng)

\J

IObservable IObservable
IObserver (implement your own) IObserver (implement your own)

See below for details about building program flow that uses these relationships. For a diagram of how to obtain the
IInTrustRepository3 interface, see Connecting to a Repository.

InTrust 11.6.0 SDK Reference
Repository Services API

Writing

Whether you want to write generic records or events, first you need access to the IRepositoryRecordInserter or
IRepositoryRecordInserter2 interface. Take the following steps:

1. Connect to the repository you need, as described in Connecting to a Repository.

2. Getthe IRepositoryRecordInserter or IRepositoryRecordInserter2 interface.
This interface manages the writing of data to a repository. To obtain it, call the Inserter method of the
lInTrustRepository3 interface of the repository you are connected to. A new inserter is created every time
you make this call. You should obtain it once and reuse it for all writing to the repository.

For details about the next steps, see the following topics:

» Writing Records
o Writing Events

Reading

Reading data from a repository means searching the repository for it. Search queries use the REL language
described in InTrust Customization Kit. For a list of fields that you can use in search queries, see Searchable Event
and Record Fields. For some important REL query specifics, see Composing REL Queries.

The data-retrieving functionality of the InTrust repository APl is modeled after the push-based notification system
used in the Microsoft .NET Framework. Therefore, the API provides similar interfaces (such as |Observable and
IObserver).

To perform a repository search

1. Connect to the repository you need, as described in Connecting to a Repository. This gives you access to
the lInTrustRepository3 interface.

2. Use the Searcher method of the lInTrustRepository3 interface to get the
IInTrustRepositorySearcher interface.

3. Use thatinterface's Search method to get an IObservable interface.

4. Subscribe to the notification using the |Observer interface.

Example of a helper function (C#):

static wvoid search events(IInTrustRepository intrust repository, string query)
{
IObservable observable = intrust repository.Searcher () .Search (query);
MyObserver observer = new MyObserver();

observable.Subscribe (observer, out observer.m cookie);

}

The repository APl also provides a way to perform searches on multiple repositories simultaneously. The
IMultiRepositorySearcher interface is provided for this purpose.

To perform a multi-repository search

1. Obtain the lInTrustRepositorySearcher interfaces for the repositories you need.

2. Construct a IMultiRepositorySearcher interface using the IMultiRepositorySearcherFactory interface.

InTrust 11.6.0 SDK Reference
Repository Services API

https://support.quest.com/technical-documents/intrust/11.6.0/Customization Kit/

3. In the newly-created interface, specify the interfaces from the first step using the
MakeMultiSearchObject method.

4. Use the returned interface as a regular lInTrustRepositorySearcher interface, as described above.
Example of a multi-repository search:

IInTrustEnvironment env = new InTrustEnvironment () ;
IInTrustServer server = env.ConnectToServer ("10.30.38.230");

IInTrustOrganization org = server.Organization;
IInTrustEventory evs = org.Eventory;
string eventory str = evs.Eventory;

IMultiRepositorySearcherFactory multi searcher fac = new
MultiRepositorySearcherFactory () ;
IMultiRepositorySearcher multi searcher = multi searcher
fac.CreateMultiRepositorySearcher (eventory str);

The example above involves an explicitly specified log knowledge base (see Log Knowledge Base API for details).
To use the default log knowledge base, rewrite it as follows:

IMultiRepositorySearcherFactory multi searcher fac = new
MultiRepositorySearcherFactory () ;
IMultiRepositorySearcher multi searcher = multi searcher
fac.CreateMultiRepositorySearcher (null) ;

For details about the next steps, see the following topics:

o Getting Records
« Getting Events

The following interfaces are involved in repository searches:

o |Observable
Enables push-based notification. Implement this interface as the source of discovered records.

o |Observer
Gets push-based notifications. Implement this interface as the search result handler.

« [Cookie
Keeps a search active. It is unlikely that you will need to handle this interface directly, but it helps to know
that it is involved in searching.

Getting Records

A repository search returns data wrapped in a polymorphic IUnknown interface, as described in Getting and Putting
Data. To interpret the data as repository records, cast it as IBulkRecord?2.

InTrust 11.6.0 SDK Reference
Repository Services API

Example (C#)

class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver
{
public REPOSITORYSERVICESLib.ICookie m cookie;
public MyObserver ()
{
}
public wvoid OnDone ()
{
Console.WritelLine ("Search done");
}
public wvoid OnError(int hr, string description)
{
Console.WriteLine ("Search error: {0}", description);
}
public wvoid OnNext (object data)
{

if (data != null)

{
IBulkRecord2 bulk record2 = (data as IBulkRecord?2);
List<record2> records = bulk record.GetRecords () .Cast<record2>

() .ToList<record2> () ;
int record count = 0;
foreach (record2 my record in records)
{

++record count;

}

System.Runtime.InteropServices.Marshal.FinalReleaseComObject (data) ;

}

For details about what repository records are, see Repository Record Data Structures.

Getting Events

A repository search returns data wrapped in a polymorphic IlUnknown interface, as described in Getting and Putting
Data. To interpret the data as event records, cast it as IBulkEventWithReadExtensions.

Example (C#)

class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver
{

public REPOSITORYSERVICESLib.ICookie m cookie;

public MyObserver ()

{

}

public void OnDone ()

{

Console.WritelLine ("Search done");

InTrust 11.6.0 SDK Reference
Repository Services API

}

public OnError (hr, description)

{

Console.WritelLine ("Search error: {0}", description);

}

public OnNext (object data)
{
if (data != null)
{
IBulkEventWithReadExtensions bulk event = (data as

IBulkEventWithReadExtensions) ;
List<event with read extensions> events = bulk event.GetEvents
() .Cast<event with read extensions>().ToList<event with read extensions>();
event count = 0;
foreach (event with read extensions my event in events)

{

++event count;

}

System.Runtime.InteropServices.Marshal.FinalReleaseComObject (data) ;

}

For details about what event records are, see Event Record Data Structures.

Composing REL Queries

REL is an expression language developed specifically for InTrust, and it is used for multiple purposes besides
repository searching.

The following topics about REL in the InTrust Customization Kit contain information that is fully applicable to queries
used for searching in repositories:

+ Words
o Expressions
o Operators

e Functions

However, due to the specifics of how repositories operate, there are some limitations on what you can include in
your queries and nuances that affect performance. These peculiarities have to do with the following:

o Use of punctuation in field values

o Whether "equals" or "contains" semantics are used

Punctuation and Other Non-Alphanumeric Characters

Some characters, such as curly braces and the hyphen, are treated in a special way by the repository indexing
engine. A query that includes these characters is automatically transformed during an indexed search, even though
the query itself may be perfectly valid. The indexing engine splits the query into substrings at these characters and
uses the substrings to make the clauses of an AND expression.

As aresult, these characters are effectively removed from the index. This affects how well irrelevant data is filtered
out and, consequently, how fast queries are evaluated. The following is a list of such characters:

InTrust 11.6.0 SDK Reference
Repository Services API

https://support.quest.com/technical-documents/intrust/11.6.0/customization-kit
https://support.quest.com/technical-documents/intrust/11.6.0/customization-kit/language-reference/rel/words
https://support.quest.com/technical-documents/intrust/11.6.0/customization-kit/language-reference/rel/expressions
https://support.quest.com/technical-documents/intrust/11.6.0/customization-kit/language-reference/rel/operators
https://support.quest.com/technical-documents/intrust/11.6.0/customization-kit/language-reference/rel/functions

A&{}()[1<>,!2.
You can deal with this limitation in the following ways:

What you can do Comments

Do nothing; leave the Your query will be transformed automatically so that the indexing engine filters out as

characters where much of the repository as it can before running the search. However, punctuation

they are. characters are not part of the index, so the expected values may not be the only ones that
match. A lot of similar but irrelevant matches can be present in the results.
How fast your query runs and how relevant its results are depends on how many
distinctive alphanumeric substrings it contains besides the punctuation:

« If your query is made up of strings that have low chances of occurrence, your
search will be fast and the results will be mostly relevant.

« If your query contains strings that occur all the time, your search will be slow and
the results will not be very useful.

Pick different fieldsto You can achieve maximum search performance, but it can be difficult or impossible to
match by; ones that find equally relevant fields.

can contain only

alphanumeric

characters.

"Equals" Versus "Contains"

In a repository search, a query that uses "equals" semantics (the striequ REL function) is always evaluated faster
than a similar query using "contains" semantics (the substr REL function). Queries with "does not equal" semantics
are even slower.

Regular expressions (the regexp REL function) are slowest.

Searchable Event and Record Fields

This topic lists the field names that you can use in your REL queries when you search for events or records in a
repository using the IObservable and |IObserver interfaces.

The results of a search are polymorphic and can be cast to events or records as necessary. In addition, you can
treat the contents of the repository as either events or records and use either event field names or record field
names. However, you cannot mix event and record field names in the same query.

For example, if your repository contains custom records with filled-in insertion strings, it is convenient to treat the
records as events for easy access to insertion string contents (see Insertion Strings below).

Event Fields

Field Details

__AnyField Look for the specified pattern in all fields.

Category A symbolic representation of the event category. Search pattern example:
"(\b]\\W|*)security"

InTrust 11.6.0 SDK Reference
Repository Services API

https://support.quest.com/technical-documents/intrust/11.6.0/customization-kit/language-reference/rel

Field

Details

Computer

Environment

EventID

PlatformID

Source

SourceComputer

SourceDomain

Time

Type

UserDomain
UserName

VersionMajor

The computer where the event was logged.

Internally, InTrust predefines two environment ID values:

« 8EAF6C85-D1FF-4CFD-9D90-64944C8EGB3E
Unix Network Environment

« 9E442BEE-EAC2-4D79-9013-053FB225CFD0
Microsoft Windows Network Environment

Custom environment IDs can also occur.

Internally, InTrust predefines the following platform ID values:

« 500
Microsoft Windows

« 610
Solaris

. 620
HP-UX

e 630
Linux

» 640
IBM AIX

Custom platform IDs can also occur.

The subsystem or service that the event is related to. For example, in forwarded Syslog
events the source is "Syslog Device".

The computer where the event originated; this can be different from the computer where it
was logged.

The domain of the computer where the event originated, if applicable.

The timestamp in the event.

Tip: Use filtering by date in your REL queries whenever the date range is known. This
speeds up searches considerably.

The predefined types are Information, Warning, Error, Failure Audit and Success
Audit.

The domain of the user who produced the event.
The name of the user who produced the event.

The major operating system version number of the computer on which the event occurred.
For example, the major version of Windows 7 is 6.

InTrust 11.6.0 SDK Reference
Repository Services API

Field Details

VersionMinor The minor operating system version number of the computer on which the event occurred.
For example, the minor version of Windows 7 is 1.

What A brief description of what the event is about.
Where The computer where the event happened (had effect).
Where_From The name or IP address of the computer from which the activity (such as a logon or

configuration change) was performed. This is not necessarily the same computer as the
one where the activity had effect.

Who The plain user name of the account that caused the event.
WhoDomain The Active Directory domain of the account that caused the event, where applicable.
Whom The user account that was affected by the event, where applicable.

Insertion Strings

To look in insertion strings and resolved insertion strings, respectively, use the following field names:
o InsertionStringN
+ ResolvedinsertionStringN

where N is the number of the string.
Examples of REL expressions:

in(InsertionStringl0O, "rei"™, " (\\b|\\W|")1is1608133597");

striequ (ResolvedInsertionString2,"is");

Record Fields

Most of the fields defined in the record data structures (see Repository Record Data Structures) can be used in
search queries:

o directory _tag_1
o directory_tag 2
o directory_tag 3
« directory_tag_4
o field_1

« field_3

« field_4

« file_tag_1

o file_tag 2

« file_tag_3

o file_tag 4

InTrust 11.6.0 SDK Reference

Repository Services API 20

« formatting_record_field
 string_field_1
o string_field_2
« string_field_3
« string_field_4
« string_field_5

Note that some fields contain integers and others strings.
Examples of REL expressions:

field 1 = 123;

striequ(directory tag 1,"blue");
striequ(formatting record field, "green");
striequ(string field 1,"cerise");

file tag 1 = 5385;

Writing Records

After you have obtained the IRepositoryRecordInserter or IRepositoryRecordInserter2 interface (as described in
Getting and Putting Data), you need to generate the data structures that you are going to write. Before you begin
writing, make sure you understand the record data structures (see Repository Record Data Structures) and are able
to construct them efficiently. The repository API provides two ways to write records: you can use either complete
record structures or arrays of the smaller structures from which records are made up. The next steps depend on
this choice.

Approach 1: Writing Whole Record Structures

In this approach, you combine your newly generated tags and contents structures into complete record
structures, put the records in an array and supply the array to the PutRecords method of the
IRepositoryRecordInserter interface.

Approach 2: Splitting Records for Writing

This approach requires that you plan in advance which of your record fields best to use as tags. This will enable you
to create records with shared tags and different contents. The IRepositoryRecordInserterLight interface stores the
tags that you want to share among your records. To get this interface, call the BindFields method of the
IRepositoryRecordInserter interface you have obtained. This method accepts your tags as a parameter.

After that, supply the contents parts of your records to the IRepositoryRecordinserterLight interface; it will form
complete record structures and perform the writing.

InTrust 11.6.0 SDK Reference

Repository Services API 21

Example (C#)

using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Runtime.InteropServices;
using REPOSITORYSERVICESLib;
using REPOSITORYRECORDINSERTERLib;
using INTRUSTENVIRONMENTLib;
namespace RepositoryRecordInserterTest?2
{

class Program

{

public static uint ToUnixTime (DateTime date)
{
var epoch = new DateTime (1970, 1, 1, 0, 0, 0, DateTimeKind.Utc);

return (uint)Convert.ToInt64 ((date.ToUniversalTime () -
epoch) .TotalSeconds) ;

}
public static DateTime UnixTimestampToDateTime (uint unixTime)

{

DateTime unixStart = new DateTime
(1970, 1, 1, 0, 0, 0, 0, System.DateTimeKind.Utc);

long unixTimeStampInTicks = (long) (unixTime * TimeSpan.TicksPerSecond) ;

return new DateTime (unixStart.Ticks + unixTimeStampInTicks);

class MyObserver : IDisposable, REPOSITORYSERVICESLib.IObserver

{

private AutoResetEvent m waitHandler;

InTrust 11.6.0 SDK Reference

Repository Services API 22

public int event count;

public REPOSITORYSERVICESLib.ICookie m cookie;

public MyObserver (AutoResetEvent x)
{
m waitHandler = x;
event count = 0;
}
public void OnDone ()
{
Console.WritelLine ("Search done");
m waitHandler.Set();
}
public void OnError (int hr, string description)
{
Console.WritelLine ("Search error - {0}", description);
m waitHandler.Set();
}

public void OnNext (object data)

{

if (data != null)

{
IBulkRecord bulk event = (data as IBulkRecord);
List<record> records = bulk event.GetRecords () .Cast<record>

() .ToList<record> () ;

foreach (record my record in records)

Console.WritelLine ("next record");

Console.WriteLine (" time - {0}", UnixTimestampToDateTime
(my record.record contents.gmt time));

foreach (named string my named string in my record.record
contents.named fields)

InTrust 11.6.0 SDK Reference

Repository Services API 23

Console.WriteLine (" key - {0}, value - {1}", my_
named string.name, my named string.value);

}

++event count;

}
System.Runtime.InteropServices.Marshal.FinalReleaseComObject (data) ;
}
public void Dispose()
{

m_cookie.Stop ()

}
static tags construct sharding fields(string log)
{

// For details about using sharding keys, see the "Repository Record
Data Structures" topic

tags tg = new tags();
tg.directory tag 1 = "ShardingLevell";

tg.directory tag 2 = "ShardingLevel2";

tg.directory tag 3 = "{A9E5C7TA2-5C01-41B7-9D36-E562DFDDEFA}"; //

Sharding level 3 must be a GUID

tg.directory tag 4 = log;

tg.file tag 1 0;

tg.file tag 2 = 500;
tg.file tag 3 = 0;
tg.file tag 4 = 0;
return tg;

}

static contents construct contents fields(insertion string[] insertion
strings, named string[] named fields, string formatting record field)

{

contents ct = new contents();

InTrust 11.6.0 SDK Reference

Repository Services API 24

ct.string field 1 "string field 1 value";

ct.string field 2 "string field 2 value";

ct.string field 3 "string field 3 value";

ct.string field 4 "string field 4 value";
ct.string field 5 = "string field 5 value";
ct.formatting record field = formatting record field;

ct.gmt time = ToUnixTime (DateTime.Now) ;

ct.field 1 = 300;

ct.field 2 = 50;

ct.field 3 = 2;

ct.field 4 = 3;

ct.strings = insertion strings;
ct.named fields = named fields;

return ct;

}

static record construct record(uint index, string logname, insertion string
[] insertion strings, named string[] named fields, string description)

{

return new record() {
record path = construct sharding fields (logname),

record contents = construct contents fields(insertion
strings, named fields, description)

b

}

static void insert records (IRepositoryRecordInserter plInserter)

{

DateTime start = DateTime.Now;
List<record> records = new List<record>();
for (uint 1 = 0; i != 16000; ++1i)

InTrust 11.6.0 SDK Reference

Repository Services API 25

value 2"
value 7"
{ name

{ name

{ name

{ name

{ name

fields,

insertion string[] insertion strings =

{

new insertion string() { index = 1, value = "My" },

new insertion string() { index = 2, value = "String
by

new insertion string() { index = 6, value = "Event" },

new insertion string() { index = 7, value = "String

i
named_string[] named fields =
{

new named string()
"FieldNamel", value = "FieldvValuel"},

new named string()
"FieldName2", value = "FieldValue2"},

new named string/()
"FieldName3", value = "FieldValue3"},

new named string()
"FieldNamed", value = "FieldvValued"},

new named string/()
"FieldName5", value = "FieldValueb5"},

b

records.Add (construct record(i, "Logl", insertion strings, named

"This %1 %6 description"));

}

}
pInserter.PutRecords (records.ToArray());

pInserter.Commit () ;

static void insert records_on_server (IRepositoryRecordInserter2 plnserter)

{

DateTime start = DateTime.Now;
List<record> records = new List<record>();

for (uint i = 0; i != 16000; ++1i)

InTrust 11.6.0 SDK Reference

Repository Services API 26

value 2"

value 7"

{ name =

{ name =

{ name =

{ name =

{ name =

}

insertion string[] insertion strings =

{

new insertion string() { index = 1, value = "My" },

new insertion string() { index = 2, value = "String
by

new insertion string() { index = 6, value = "Event" },

new insertion string() { index = 7, value = "String

i
named_string[] named fields =
{

new named string()
"FieldNamel", value = "FieldvValuel"},

new named string()
"FieldName2", value = "FieldValue2"},

new named string/()
"FieldName3", value = "FieldValue3"},

new named string()
"FieldNamed", value = "FieldvValued"},

new named string/()
"FieldName5", value = "FieldValueb5"},

b

records.Add (construct record(i, "Logl", insertion strings, named
fields, "This %1 %6 description"));

}
pInserter.PutRecords (records.ToArray());

plnserter.Commit2 (ToServerRepositoryCommitType) ;

static tags construct naive sharding fields(string log)

{

// For details about using sharding keys, see the "Repository Record

Data Structures" topic

tags tg = new tags();
tg.directory tag 1 = "ShardingLevell";

tg.directory tag 2 = "ShardingLevel2";

InTrust 11.6.0 SDK Reference
Repository Services API

27

tg.directory tag 3 = "{A9E5C7A2-5C01-41B7-9D36-E562DFDDEFA9}"; //
Sharding level 3 must be a GUID

tg.directory tag 4 = log; // ShardingLevel4
return tg;
}

static contents construct naive contents fields (named string[] named fields)

contents ct = new contents{();

ct.gmt _time = ToUnixTime (DateTime.Now) ;
ct.named fields = named fields;
return ct;

}

static record construct naive record(uint index, string logname, named
string[] named fields)

{
return new record()
{
record path = construct naive sharding fields(logname),
record contents = construct naive contents fields(named fields)
bi
}
static void insert naive records (IRepositoryRecordInserter pInserter)

{

DateTime start = DateTime.Now;
List<record> records = new List<record>();
for (uint 1 = 0; i != 16000; ++1i)

named_string[] named_fields =

{

new named string/()
{ name = "FieldNamel", value = "FieldvValuel"},

new named string()
{ name = "FieldName2", value = "FieldValue2"},

InTrust 11.6.0 SDK Reference

Repository Services API 28

new named string/()
{ name = "FieldName3", value = "FieldValue3"},

new named string()
{ name = "FieldName4", value = "FieldvValued"},

new named string()
{ name = "FieldName5", value = "FieldValueb5"},

bi
records.Add (construct naive record(i, "Logl", named fields));
}
pInserter.PutRecords (records.ToArray());
pInserter.Commit () ;

}

static void search records (IInTrustRepository intrust
repository, string query)

{
IObservable observable = intrust repository.Searcher.Search (query);
AutoResetEvent waitHandler = new AutoResetEvent (false);
MyObserver observer = new MyObserver (waitHandler) ;
observable.Subscribe (observer, out observer.m cookie);

walitHandler.WaitOne () ;

static void records example (IInTrustRepository intrust repository)
{
IRepositoryRecordInserter pInserter = intrust repository.Inserter;

// Insert records with strictly key-value data directly to the

repository
insert naive records(pInserter);

search records (intrust repository, " (in(_ AnyField, \"rei\", \"
(\\\\b [\\\\W| ") Fieldvalue5\"));");

// Insert records directly to the repository
insert records (pInserter);

search records (intrust repository, " (in(_ AnyField, \"rei\", \"
(\\\\DIN\\\W[~) String value 7\"));"

InTrust 11.6.0 SDK Reference

Repository Services API 29

// Insert records by queuing them on the server
insert records on server (pInserter as IRepositoryRecordInserter2);

System.Threading.ThreadSleep (60000);// We need to wait, because there
will be a delay up to a minute before the event arrives in the repository

search records (intrust repository, " (in(_ AnyField, \"rei\", \"
(\\\\b |[\\\\W| ") String value 7\"));"

}
static void Main(string[] args)
{
if (args.Length != 2)
{
Console.WritelLine ("Invalid argument count.\n");

Console.WritelLine ("\tRepositoryRecordInserterTest.exe <InTrust
Server Binding String> <Repository Name>\n");

return;

try

InTrustEnvironmentintrust environment = new InTrustEnvironment();

IInTrustOrganization3 intrust organization = intrust
environment.ConnectToServer (args[0]) .Organization as IInTrustOrganization3;

IInTrustRepository3 intrust repository = intrust
organization.Repositories2.Cast<IInTrustRepository3> () .Where (x => x.Name == args
[1]) .First () ;

records example (intrust repository);

catch (Exception e)

Console.WritelLine ("Error : {0}", e.ToString());

InTrust 11.6.0 SDK Reference

Repository Services API 30

Writing Events

After you have obtained the IRepositoryRecordInserter interface (as described in Getting and Putting Data), take
the following steps:

1. Generate valid event_with_extensions structure instances; this structure is described in Event Record
Data Structures.

2. Through combined use of the IEventToRecordFormatter and IRepositoryRecordInserter interfaces, supply
your newly generated events for writing.
For that, use the Format method of the IEventToRecordFormatter interface to wrap your events in
IBulkEventWithReadExtensions, and pass the resulting wrapper interface as a parameter to the
PutRecords2 method of the IRepositoryRecordInserter interface.

Sort Order for Writing

When you write events in batches, the events must be sorted by gmt_time, but not necessarily throughout the
entire batch. The important thing is to sort those events where the following are the same: domain, computer, log
name. That is the scope where you need to sort. For example, if your event batch contains 1000 events from 1000
computers, no sorting is necessary. But if it is 1000 events from two computers, you need to do two sorts.

Out-of-Order Writing

Submitting events out of order is possible, but there is a serious caveat. Whenever the timestamp of your event is
less than that of the event you submitted last, you must use the Commit method of your inserter interface before
you write the “flashback” event. Here are some implications of this:

« Events that are newer than the last-submitted event and older than that event should not be put in the same
batch. Otherwise, timestamps will not be interpreted correctly. For example, searching within a specific time
range will not return events that match but were written out of order between commits.

« A huge amount of repository files (caused by frequent commits) is bad for performance. Batch your “old”
events as much as possible.

Repository Record Data Structures

Arecord is a chunk of data that is (or has been prepared for being) stored in a repository and processed by
repository searches. A record is made up of two parts: tags and contents. The tags indicate where in the file system
the file with this record is located. At the same time, the tags double as record field values. The contents do not do
anything other than contain record field values.

When you create records, it is important which fields you use as tags and which you use as contents. By handling
tags rationally you can help speed up searches on the data you are storing and minimize disk usage by your
repository contents.

When you search for records, it doesn't matter in search queries whether a value is used as a tag or as contents.

For recommendations on efficiently organizing data fields in records, see Recommendations on Setting Tags below.

tags

struct tags

InTrust 11.6.0 SDK Reference

Repository Services API 3

BSTR directory tag 1;
BSTR directory tag 2;
BSTR directory tag 3; // must specify a GUID
BSTR directory tag 4;
unsigned file tag 1;
unsigned file tag 2;
unsigned file tag 3;
unsigned file tag 4;

bi

Contains the values of eight of the record's fields. In addition to carrying record data, this combination of fields is
used for identifying the path to a folder and the name of a file in the repository tree. Repository trees are four levels
deep, and files are located only at the deepest level.

The directory tags specify the four nesting levels. The third level must be a string representation of a GUID; InTrust
verifies the format. This requirement is due to the implementation of the repository services. The GUID is used for
identifying event-providing data sources, and each data source type has a particular known GUID. You may want to
come up with your own set of special-purpose GUIDs for your specific tasks (for example, hierarchical organization).

The file tags specify the four parts of the file's base name. A file represented by this structure contains one or more
entries represented by contents and contents2 structures. If the number of entries per file hits a limit, the same
base name is used for creating a new file, and the entries are continued in it.

In a simplified way, the location of a repository file in the file system hierarchy can be represented as follows:

repository_root

L directory_tag_1

L directory_tag_2
L directory_tag_3
L directory_tag_4

Lfile tag 1_file_tag 2 file_tag_3_file_tag_4_InTrust_internal_tags
Because tags correlate with the file system, make sure their values do not contain characters that are disallowed in
file and directory names.

contents

struct contents

{
unsigned field 1;
unsigned field 2;
short field 3;
short field 4;

DATE gmt time;

InTrust 11.6.0 SDK Reference

Repository Services API 32

BSTR string field 1;

BSTR string field 2;

BSTR string field 3;

BSTR string_field_4;

BSTR string field 5;

SAFEARRAY (struct insertion string) strings;
SAFEARRAY (struct named string) named fields;
BSTR formatting record field;

}i

Used for writing records to the reposiotry and contains the remaining values of the record fields in addition to those
specified by the tags structure. This structure is physically represented by an entry in a repository file.

*

i | NOTE: The InTrust repository is known to easily handle up to 300 strings per record. Higher numbers of
strings have not been tested and cannot be recommended.

As a best practice, make sure that your string mapping is consistent; that is, the same string numbers should
have the same meanings across your records. This is beneficial for repository searches.

At this time, the field_2 field is not indexed and cannot be processed in repository
searches. Writing useful data to this field is currently not recommended.

contents2

struct contents2

unsigned field 1;

unsigned field 2;

short field 3;

short field 4;

DATE gmt time;

BSTR string field 1;

BSTR string field 2;

BSTR string field 3;

BSTR string field 4;

BSTR string field 5;

SAFEARRAY (struct insertion string) strings;
SAFEARRAY (struct named string) native named fields;

SAFEARRAY (struct named string) resolved named fields;

InTrust 11.6.0 SDK Reference

Repository Services API 33

BSTR formatting record field;

b7
Used in results of repository searches and contains the remaining values of the record fields in addition to those
specified by the tags structure. This structure is physically represented by an entry in a repository file.

Unlike the contents structure, the contents2 structure contains two distinct arrays of named_string structures.
This is because the data for the native_named_fields field is not known during record writing. It is only available to
repository searches.

i | NOTE: The InTrust repository is known to easily handle up to 300 strings per record. Higher numbers of
strings have not been tested and cannot be recommended.

As a best practice, make sure that your string mapping is consistent; that is, the same string numbers should
have the same meanings across your records. This is beneficial for repository searches.

At this time, the field_2 field is not indexed and cannot be processed in repository
searches. Writing useful data to this field is currently not recommended.

record

struct record

{

struct tags record path;

struct contents record contents;
}i

Combines the path-specifying (tags) and complementary (contents) parts of a record into a single structure. This
type of record is used for writing to the repository.

record2

struct record?2

{
struct tags record path;

struct contents2 record contents;

bi
Combines the path-specifying (tags) and complementary (contents2) parts of a record into a single structure. This
type of record is returned by repository searches.

Recommendations on Setting Tags

Organize your record tags according to the likelihood of the value being the same in a given collection of records.
That s, directory_tag_1 should contain the value that is the same in most of the records you are about to generate.
Conversely, directory_tag_4 should contain the value that the fewest records have in common. Also note that the
best way to map the tags (and thereby define how the records will be stored physically) is to make them correspond
to something that falls into a meaningful hierarchy. For example, all your records might be Security log events, but it

InTrust 11.6.0 SDK Reference

Repository Services API 34

still doesn't make sense to make the log name the topmost level. You would do better to tag map directory_tag_
1,..., directory_tag_4 to domain, computer, data source and log name, respectively; even though there is more
value variation at the top levels this way.

A repository can store heterogeneous objects, but you need a way to tell their types apart. This requires a generic ID
field, and directory_tag_3 is good for the purpose. If you come up with a GUID for each object type (file system,
computer, Active Directory object and so on), you will not confuse them. A further improvement is to design a
hierarchy of IDs.

Event Record Data Structures

These data structures are alternatives to generic repository record data structures. Use event records for
convenience when your records represent log events. For details about the meaning of the fields used in event
records, see Event Record Data Structures below.

The primary data structure is base_event. There are also two structures that extend it: event_with_extensions
and event_with_read_extensions. For details about the use of these data structures, see Getting Events and
Writing Events.

base event
struct base event
{
BSTR environment;
BSTR gathering domain;
BSTR gathering computer;
BSTR datasource type;
BSTR gathered event log;
BSTR user name;
BSTR user domain;
BSTR source name;
BSTR computer name;
BSTR string category;
BSTR description template;
SAFEARRAY (struct insertion string) strings;
SAFEARRAY (unsigned char) binary data;
unsigned time gmt;
unsigned time generated;

long time bias;

InTrust 11.6.0 SDK Reference

Repository Services API 35

unsigned record key;
unsigned event id;
unsigned computer type;
unsigned platform id;
short version major;
short version minor;
short event type;

short numeric category;
unsigned padding000;

bi

The binary_data field is present only for compatibility with Windows events. This data
cannot be indexed or processed in repository searches. Writing useful data to this field is not
recommended.

event_with_read_extensions

struct event with read extensions
{
struct base event original event;
BSTR formatted description;
SAFEARRAY (struct augmented insertion string) resolved strings;
SAFEARRAY (struct named string) named strings;

b

named_string

struct named string
{
BSTR name;
BSTR value;
i

i | IMPORTANT: In the string names that you define, use only alphanumeric ASCII characters and the
underscore (_) character.

InTrust 11.6.0 SDK Reference

Repository Services API 36

insertion_string

struct insertion string
{

BSTR value;

int index;

int padding;
i

A regular insertion string.

augmented_insertion_string

struct augmented insertion string
{

int source index;

int result index;

BSTR wvalue;
i

These are normalized parameters that are not originally present in native events. For a description of these
parameters, see the Filter Parameters in Repository Viewer topic.

1 | NOTE: The source_index field holds the index of the original insertion string. The result_index field holds
the index of the resulting insertion string after the original has been resolved.

event_with_extensions

struct event with extensions
{
struct base event original event;
SAFEARRAY (struct resolved string) resolved strings;

b

i | NOTE: The InTrust repository is known to easily handle up to 300 insertion strings per event. Higher
numbers of strings have not been tested and cannot be recommended.

As a best practice, make sure that your insertion string mapping is consistent; that is, the same insertion
string numbers should have the same meanings across your events. This is beneficial for repository
searches.

event_with_extensions2

struct event with extensions2
{
struct base event original event;

SAFEARRAY (struct resolved string) resolved strings;

InTrust 11.6.0 SDK Reference

Repository Services API 37

https://support.quest.com/technical-documents/intrust/11.6.0/searching-for-events-in-repository-viewer/filter-parameters-in-repository-viewer

SAFEARRAY (struct named string) named fields;

b

resolved_string

struct resolved string
{
BSTR value;
int insertion_string_index;
resolve type insertion string resolve type;

}s

typedef enum

{
custom = 0,
parameter,
ad object guid to distinguished name,
user sid to user name,
group_policy guid to group policy object name,
device name to path

} resolve type;

The resolve_type enumeration specifies what kind of resolution is supposed to have taken place to get the
resulting value. The insertion string resolution mechanismin InTrust is fairly complex, but for the purposes of the

repository service APl it is enough to follow this example:

insertion string[] insertion_ strings

{

new insertion string() { index = 1, padding = 0, value = "original string" },

new insertion string() { index = 2, padding = 0, value = "%%2308" }, // event
parameter

new insertion string() { index = 3, padding = 0, value = "{9F29FD37-3CD4-4179-
99F1-A6341DCC4EB3}" }, // ad object guid (user guid

new insertion string() { index = 4, padding = 0, value = "S-1-1-0" },
sid

new insertion string() { index = 5, padding = 0, value = "{29EDB5C5-B2C1-4001-
9C96-EE51A6ATCAC3}" }, // ad object guid (group policy

new insertion string() { index = 6, padding = 0, value =
"\\Device\\HarddiskVolumel\\SomeFolder\\SomeFile.txt" } };
resolved string[] resolved insertion strings =

{

new resolved string() {insertion string index = 2, insertion

= resolve type.parameter, value = "The user has not been granted
logon type at this machine."},

new resolved string() {insertion string index = 3, insertion

resolve type.ad object guid to distinguished name, value =
"CN=userl, DC=aa, DC=com"},

new resolved string() {insertion string index = 4, insertion

resolve type.user sid to user name, value = "EDM\\User2"},

new resolved string() {insertion string index = 5, insertion

47ae-8ACA-CB0460089616}, DC=aa, DC=com"},

new resolved string() {insertion string index = 5, insertion

resolve type.ad object guid to distinguished name, value = "CN=

string resolve type
the requested

string resolve type

string resolve type

string resolve type
{B96B9D14-E2A4~

string resolve type

InTrust 11.6.0 SDK Reference

Repository Services API

38

= resolve type.group policy guid to group policy object name, value =
"MyGroupPolicyObject"},

new resolved string() {insertion string index = 6, insertion string resolve type
= resolve type.ad object guid to distinguished name, value =
"D:\\SomeFolder\\SomeFile.txt"},
bi
Note that in the case of resolving a group policy GUID to a group policy name you need to provide two resolved_
string instances.

Creating and Removing Repositories

The methods for creating and removing production InTrust repositories (Add and Remove) are available in the
IInTrustRepositoryCollection2 interface, which provides access to all repositories in a particular InTrust
organization.

For these operations to succeed, the account you are using must be an InTrust
organization administrator. To configure this privilege for the account, do one of the following:

+ InInTrust Deployment Manager, click Manage | Configure Access.

¢ In InTrust Manager, open the properties of the root node.

Calling the Add method of lInTrustRepositoryCollection2 is not enough to create a repository. After you have made
the call and obtained the IInTrustRepository3 interface, you need to complete the configuration of its options and
call its Commit method. This will complete the creation of the repository.

For details about obtaining a collection of repositories, see Connecting to a Repository.

Instead of a production repository (which is registered with InTrust, managed by an InTrust server and has an entry
in the InTrust configuration), you may want to create an idle repository (which has only the raw repository file
structure). For that, use the IldleRepositoryFactory interface, which constructs lldleRepository interfaces.

Working with Repository Properties

Repositories have very flexible configuration, where some properties are predefined and others can be custom-
defined. Access to repository configuration is provided through the IInTrustRepository3 interface, which has getter
and setter methods for supported property groupings. The following groupings are available at this time:

» Forwarding properties
These properties are used by the event forwarding engine in InTrust (see Integration into SIEM Solutions
Through Event Forwarding). For details about these properties, see IForwardingSettings.

» Indexing properties
These properties are the configuration of the repository indexing engine in InTrust (see Repository Indexing
for Advanced Search Capabilities). For details about these properties, see IIndexingSettings.

InTrust 11.6.0 SDK Reference

Repository Services API 39

https://support.quest.com/technical-documents/intrust/11.6.0/integration-into-siem-solutions-through-event-forwarding/
https://support.quest.com/technical-documents/intrust/11.6.0/integration-into-siem-solutions-through-event-forwarding/
https://support.quest.com/technical-documents/intrust/11.6.0/repository-indexing-for-advanced-search-capabilities/
https://support.quest.com/technical-documents/intrust/11.6.0/repository-indexing-for-advanced-search-capabilities/

e Custom attributes

These are arbitrary properties that you can set as necessary for your own purposes. For details, see Using
Custom Attributes.

Using Custom Attributes

You can associate custom attributes with InTrust repositories. They are available through the CustomAttributes

methods of an IInTrustRepository3 interface. They use the |IProperty interface and are accessed collectively through
IPropertyCollection interfaces.

There are no custom attribute guidelines; what custom attributes you add and how you use them is up to you.
However, note that the following limits are set for the generic IProperty interface used by custom attributes:

« Name: 64 characters

« Ifyou set a string of the BSTR type for the value: 1024 characters

Itis also recommended that you keep the number of custom attributes low: tens rather than hundreds.
For details about the generic property interfaces used for custom attributes, see IProperty and IPropertyCollection.

InTrust 11.6.0 SDK Reference

Repository Services API 40

Example (C#)

/* Connect to repository */

IInTrustEnvironment2 env = new InTrustEnvironment () ;

IInTrustServer server = env.ConnectToServerWithCredentials ("8.8.8.8",

@"domain\user_name", "password") ;

IInTrustOrganization org = server.Organization as IInTrustOrganization3;
IInTrustRepository3 rep = org.Repositories2.Item("Default InTrust Audit

Repository");

/* Get collection of custom attributes */
IPropertyCollection props = rep.CustomAttributes;

/* Set custom attributes */

props.Set ("NumberAttr", 12);

props.Set ("StringAttr", "Initial status");
rep.Commit () ;

/* Get attribute by name */

IProperty stringAttr = props.Item("StringAttr");

/* Get value */

System.Console.WritelLine ("String attribute value is {0}", stringAttr.PropertyValue);
/* Set new value */

stringAttr.PropertyValue = "Updated status";

rep.Commit () ;

/* Enumerate all attributes */
foreach (IProperty prop in props)
{
System.Console.WriteLine ("Attibute : {0}, Value : {1}", prop.PropertyName,
prop.PropertyValue) ;
}

/* Delete attribute */

props.Remove ("NumberAttr") ;

(props as IADCCommitable) .Commit(); /* Commit only the custom properties without the
other repository fields */

InTrust 11.6.0 SDK Reference

Repository Services API M

Log Knowledge Base API

The log knowledge base contains settings for transforming data from original log formats to the repository format.
The API does not work with predefined log definitions, which are completely out of its scope; it is designed only for
user-defined logs.

To work with the log knowledge base, use the following interfaces:

o lInTrustEventory
« lInTrustEventoryltemCollection

e |InTrustEventoryltem

To begin working with the log knowledge base, get a collection of known organizations (Organizations method of
the lInTrustEnvironment interface) and pick the necessary one. This involves working with the
IInTrustOrganizationCollection interface. Organizations are discovered by an Active Directory query.

The IInTrustOrganization3 that you get has the Eventory method, which provides access to the organization-wide
log knowledge base.

For details about the format of rules for matching log events and mapping fields, see Log Transformation
Rule Format.

If you modify the knowledge base for a specific log, this will invalidate all existing index
data for that log in all repositories that contain the log. Indexed searches will no longer find this
log’s events gathered prior to the modification. Data gathered after the modification will be indexed
correctly and be searchable.

If the unavailability of old data is not a problem for you, you don't have to do anything. Otherwise,
you will need to recreate valid indexes for all repositories that contain the log. However, it is not
feasible to recreate an index for a large production repository without taking it offline for a long
time. If you need to experiment with log knowledge base editing, use a dedicated test organization
and small repositories, which can be reindexed quickly.

For details about repository reindexing, see Recreating the Index.

Example

GetFullEventory ()

IInTrustEnvironment env = new InTrustEnvironment () ;
IInTrustServer server = env.ConnectToServer ("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;

string eventory = ev.Eventory;
Console.WritelLine ("Full eventory : " + eventory);
}
AddNewLog ()
{
IInTrustEnvironment env = new InTrustEnvironment () ;

IInTrustServer server = env.ConnectToServer ("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventorylItemCollection logs = ev.Logs;

InTrust 11.6.0 SDK Reference

Log Knowledge Base API 42

https://support.quest.com/technical-documents/intrust/11.6.0/repository-indexing-for-advanced-search-capabilities/recreating-the-index

IInTrustEventoryItem log = logs.Add("NewLog",
@"<FieldInfo>

<Fields>
<Field FieldName = ""New field"" DisplayName = ""NewField""
IsIndexed = ""true""></Field>
</Fields>
<EventRules>
<Event EventID = ""701"">
<Field Name = ""Who"" Index = ""11""></Field>
<Field Name = ""What"" Index = ""12""></Field>
<Field Name = ""Object Type"" Index = ""13""></Field>
<Field Name = ""Object Name"" Index = ""14""></Field>
</Event>
</EventRules>

</FieldInfo>");
}
static wvc

{

| GetLogAndChangeRule ()

IInTrustEnvironment env = new InTrustEnvironment () ;
IInTrustServer server = env.ConnectToServer ("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventorylItemCollection logs = ev.Logs;
IInTrustEventoryItem log = logs.Item("NewLog");
log.Rules = @"<FieldInfo>
<Fields>
<Field FieldName = ""New field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
</Fields>
<EventRules>
<Event EventID = ""701"">
<Field Name = ""Who"" Index = ""11""></Field>
</Event>
</FieldInfo>";
}
static void EnumLogs ()
{
IInTrustEnvironment env = new InTrustEnvironment () ;
IInTrustServer server = env.ConnectToServer ("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;
foreach (IInTrustEventoryItem cur log in logs)
{
string log name = cur log.Name;
string log rule = cur log.Rules;
Console.WriteLine ("Log name : " + log name);
Console.WriteLine ("Log rule : " + log rule);

| RemoveLog ()

IInTrustEnvironment env = new InTrustEnvironment () ;

InTrust 11.6.0 SDK Reference

Log Knowledge Base API 43

IInTrustServer server = env.ConnectToServer ("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryItemCollection logs = ev.Logs;
logs.Remove ("NewLog") ;

}

static voilid AddNewDataSource ()

{

IInTrustEnvironment env = new InTrustEnvironment () ;

IInTrustServer server = env.ConnectToServer ("8.8.8.8");

IInTrustOrganization3 org = server.Organization;

IInTrustEventory ev = org.Eventory;

IInTrustEventoryltemCollection dataSources = ev.DataSources;

IInTrustEventorylItem dataSource = dataSources.Add("{10000000-0000-0000-0000-
000000000001} ",@"<FieldInfo>

<Fields>
<Field FieldName = ""New field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
</Fields>
<EventRules>
<Event EventID = ""701"">
<Field Name = ""Who"" Index = ""11""></Field>
<Field Name = ""What"" Index = ""12""></Field>
<Field Name = ""Object Type"" Index = ""13""></Field>
<Field Name = ""Object Name"" Index = ""14""></Field>
</Event>
</EventRules>
</FieldInfo>");
}
static voild GetDataSourceAndChangeRule ()
{
IInTrustEnvironment env = new InTrustEnvironment () ;

IInTrustServer server = env.ConnectToServer ("8.8.8.8");
IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryltemCollection dataSources = ev.DataSources;
IInTrustEventorylItem dataSource = dataSources.Item("{10000000-0000-0000-0000-
000000000001}™) ;
dataSource.Rules = @"<FieldInfo>
<Fields>
<Field FieldName = ""New field"" DisplayName = ""NewField"" IsIndexed =
""true""></Field>
</Fields>
<EventRules>
<Event EventID = ""701"">
<Field Name = ""Who"" Index = ""11""></Field>
</Event>
</FieldInfo>";
}
static void EnumDataSources ()
{
IInTrustEnvironment env = new InTrustEnvironment () ;
IInTrustServer server = env.ConnectToServer ("8.8.8.8");

InTrust 11.6.0 SDK Reference

Log Knowledge Base API 44

IInTrustOrganization3 org = server.Organization;
IInTrustEventory ev = org.Eventory;
IInTrustEventoryltemCollection dataSources = ev.DataSources;
foreach (IInTrustEventoryItem curDataSource in dataSources)

{

string ds name = curDataSource.Name;
string ds rule = curDataSource.Rules;
Console.WriteLine ("Data source name : " + ds name);
Console.WriteLine ("Data source rule : " + ds rule);
}
}
static void RemoveDataSources ()
{
IInTrustEnvironment env = new InTrustEnvironment () ;
IInTrustServer server = env.ConnectToServer ("8.8.8.8");
IInTrustOrganization3 org = server.Organization;

IInTrustEventory ev = org.Eventory;
IInTrustEventoryltemCollection dataSources = ev.DataSources;
dataSources.Remove ("{10000000-0000-0000-0000-000000000001}") ;

NOTE: In the functions that handle data sources, the data source name must be in GUID format; for
example:

{10000000-0000-0000-0000-000000000001}

Log Transformation Rule Format

Log transformation rules are defined as XML. The structure of a rule is shown in the example below, which contains
all of the tags and parameters available.

<FieldInfo>
<Fields>
<Field FieldName = "TTF" DisplayName = "TTest Field" IsIndexed = "true"></Field>
<Field FieldName "TTF2" DisplayName = "TTest Field 2" IsIndexed =
"true"></Field>
</Fields>
<EventRules>
<Event EventID = "701">
<Field Name = "TTF" Index = "1"></Field>
<Field Name = "TTF2" Index = "3"></Field>
</Event>
</EventRules>
</FieldInfo>

Log events are matched by Event ID, and the Field tags specify how the original event fields are mapped to
repository record fields. The Index parameter specifies the index of the target insertion string.

The following is a variation of the example above:

<FieldInfo>
<Fields>
<Field FieldName = "TTF" DisplayName = "TTest Field" IsIndexed =

InTrust 11.6.0 SDK Reference

Log Knowledge Base API 45

"true"></Field>

<Field FieldName = "TTF2" DisplayName = "TTest Field 2" IsIndexed =

"true"></Field>
</Fields>
<EventRules>

<Field Name
<Field Name
</EventRules>
</FieldInfo>

"TTEF" Index = "1"></Field>
"TTE2" Index = "3"></Field>

In this second snippet, the rule applies to all event IDs in a log.

InTrust 11.6.0 SDK Reference
Log Knowledge Base API

46

Enumerations

CustomizableCredentialsType
DomainEnumerationType
IndexBuilderType
IndexLocationType
ScriptLanguage
SiteCollectionType
SiteObjectType

SiteType

CustomizableCredentialsType

enum CustomizableCredentialsType

{
CurrentCusomizableCredentials,
DefaultCustomizableCredentials,
CustomCustomizableCredentials

b

DomainEnumerationType

enum DomainEnumerationType

{
CurrentDomainEnumeration,
ComputerBrowserDomainEnumeration,
ComputerListDomainEnumeration

b

IndexBuilderType

enum IndexBuilderType

{
CurrentIndexBuilder,
ServerIndexBuilder,
SiteIndexBuilder

}i

InTrust 11.6.0 SDK Reference
Enumerations

IndexLocationType

enum IndexLocationType

{
CurrentIndexLocation,
RepositoryIndexLocation,
CustomIndexLocation

RepositoryCommitType

enum RepositoryCommitType

{
ToRepositoryRepositoryCommitType,
ToServerRepositoryCommitType

ScriptLanguage

enum ScriptLanguage
{
ECMAScript,
JScript,
PSScript,
VBScript

SiteCollectionType

enum SiteCollectionType
{
VisibleSites,
AllSites

InTrust 11.6.0 SDK Reference
Enumerations

SiteObjectType

enum SiteObjectType

{

b

UnknownSiteObject,
MsnWholeNetworkSiteObject,
DomainSiteObject,
ComputerSiteObject,
IPAddressRangeSiteObject,
ComputerListFileSiteObject,
OrganizationalUnitSiteObject,
ActiveDirectorySiteSiteObject,
EnumerationScriptSiteObject,
DomainControllersInDomainSiteObject,
DomainControllersInActiveDirectorySiteSiteObject

SiteType

SiteType

{

b

MicrosoftNetworkSite,
UnixNetworkSite

InTrust 11.6.0 SDK Reference
Enumerations

Interfaces

The following is a list of all interfaces available with the InTrust repository API:

Interface

Details

IActiveDirectorySiteSiteObject

IBulkEventWithReadExtensions

IBulkRecord

IBulkRecord2

IComputerListDomainEnumeration

IComputerListFileSiteObject

IComputerSiteObject

ICookie

ICredentials

ICustomCredentials

|CustomIndexLocation

ICustomizableCredentials

Represents an Active Directory
site from which to put computers
in an InTrust site.

Results of a repository search as
an array of event_with_read_
extensions structures.

Records packed into a single
batch as an array of record
structures for writing to the
repository.

Results of a repository search as
an array of record? structures.

Represents the configuration of
site membership enumeration
through a computer list.

Represents a file that contains a
list of computers to include in an
InTrust site.

Represents a single computer in
an InTrust site.

Acts as the owner of a repository
search and can stop the search.

Represents a credential set used
by InTrust for access to
resources.

Wrapper for a credential set used
by InTrust for access to
resources.

Gets or sets the location of the
index of a repository.

This is a wrapper for a credential
set used by InTrust for access to
resources.

InTrust 11.6.0 SDK Reference
Interfaces

50

Interface

Details

IDomainEnumeration

IDomainSiteObject

IEnumerationScriptSiteObject

IEventToRecordFormatter

IForwardingFilterCollection

IForwardingSettings

IldleRepository

IldleRepositoryFactory

lIndexBuilder

IIndexingSettings

IIndexManager

lIndexManagerFactory

Indicates which method of
domain enumeration is used for
populating an InTrust site.

Represents computers in an
InTrust site that are indicated by
an Active Directory domain.

Represents a script that
enumerates the computers to
include in an InTrust site.

Transforms event records to a
representation suitable for
insertion into a repository by the
PutRecords2 method of
IRepositoryRecordInserter.

Provides a collection of all
search-based filters associated
with an InTrust repository.

Provides access to the event
forwarding settings for a
repository.

An idle repository has the correct
structure on the file system, but is
not registered with an InTrust
organization. Currently, you can
search in idle repositories using
the repository API, but you cannot
write to them.

Creates an idle InTrust repository.

Represents the index-building
configuration for the repository.
Indexing can be performed by an
InTrust server or delegated to
InTrust agents in a specific site.

Provides access to the indexing
configuration of a repository.

Provides access to indexing-
related operations.

Creates an instance of
IIndexManager for a production or
idle repository.

InTrust 11.6.0 SDK Reference
Interfaces

51

Interface

Details

lInTrustEnvironment

lInTrustEnvironment3

lInTrustEventory

lInTrustEventoryltem

IInTrustEventoryltemCollection

IInTrustOrganization

IInTrustOrganization3

IInTrustOrganizationCollection

lInTrustRepository3

IInTrustRepositoryCollection2

lInTrustRepositorySearcher

IInTrustScriptCollection

lInTrustServer

lInTrustServerCollection

IInTrustSiteCollection

IIPAddressRangeSiteObject

See lInTrustEnvironment3.

Entry point for access to InTrust
organizations, servers and
repositories.

Provides access to the log
knowledge base, which contains
rules that govern the
transformation of log entries into
repository and event records.

Represents an entry in the log
knowledge base.

Provides a collection of
IInTrustEventoryltem interfaces.

Legacy interface supplanted by
IInTrustOrganization3.

Provides access to an InTrust
organization.

Provides a collection of all
available InTrust organizations.

Provides the searching and
writing capabilities of a repository.

Provides a collection of all
repositories available in the
InTrust organization.

Provides repository search
capabilities.

Provides a collection of scripts
used in InTrust operations.

Provides access to an InTrust
server.

Provides a collection of all InTrust
servers in the InTrust
organization.

Represents the sites in an InTrust
organization.

Represents a range of

InTrust 11.6.0 SDK Reference
Interfaces

52

Interface

Details

IJob2

ITransportinfoCollection

IMessageFormatCustominfo

IMessageFormatinfo

IMessageFormatTypelnfo

IMessageFormatTypelnfoCollection

IMicrosoftNetworkSite

IMultiRepositorySearcher

IMultiRepositorySearcherFactory

IObservable

|Observer

IOrganizationalUnitSiteObject

IP addresses that are included in
an InTrust site.

Represents a subset of the
configuration of an InTrust job.

Provides a collection of all
transport types supported by
InTrust event forwarding.

Represents a customizable
script-based message formatter
used for event forwarding.

Provides access to the formatting
configuration for forwarded
events.

Defines a message format for
forwarded events and can be
used as a template for creating
new formats.

Provides a collection of all
message format types supported
by InTrust event forwarding.

Represents an InTrust site of the
Microsoft Windows Network type.

A container for search objects
that lets you search in all of the
specified repositories
simultaneously.

Creates an instance of
IMultiRepositorySearcher.

Defines a provider for push-based
notification.

Provides a mechanism for
receiving push-based
notifications. You need to create
your own implementation of this
interface.

Represents an organizational unit
from which to put computers in an
InTrust site.

InTrust 11.6.0 SDK Reference
Interfaces

53

Interface

Details

IProperty

IPropertyCollection

IRepositoryRecordInserter

IRepositoryRecordInserter2

IRepositoryRecordInserterLight

IScript

IScriptArgument

IScriptArgumentCollection

IScriptParameter

IScriptParameterCollection

Property attached to an InTrust
repository. A property is a way to
tag repositories for arbitrary
purposes.

Collection of properties
associated with an InTrust
repository. Access to the
collections is gained through
specialized methods of the
IInTrustRepository3 interface
(such as CustomAttributes).

Provides write access to the
repository that it is associated
with and manages one or more
IRepositoryRecordInserterLight
interfaces, which do the actual
writing.

Provides write access to the
repository that it is associated
with and manages one or more
IRepositoryRecordInserterLight
interfaces, which do the actual
writing. This method can submit
records to a queue on the server
or put them directly in the
repository.

Generates valid record structures
from predefined and significant
values and writes them to the
repository.

Represents a script used in
InTrust operations.

Represents an argument used
with an InTrust site enumeration
script.

Represents the arguments
defined for an InTrust script.

Represents a customizable
parameter defined for an InTrust
script.

Represents the parameters

InTrust 11.6.0 SDK Reference
Interfaces

54

Interface

Details

ISite

ISiteComputer

ISiteComputerCollection

ISitelndexBuilder

ISiteObject

ISiteObjectCollection

ITask2

lIndexBuilderAccess

ITransportinfo

ITransportinfoCollection

defined for an InTrust script.

Represents an InTrust site, which
can be a regular site visible in
InTrust Manager or a hidden
internal site associated with a
collection visible in InTrust
Deployment Manager.

Represents a computer that is
included in an InTrust site.

Represents an InTrust site
associated with a collection
visible in InTrust Deployment
Manager.

Represents the distributed
indexing configuration for a
repository.

Represents a computer-
specifying object that can be
included in a site.

Represents the computer-
specifying objects included in a
site.

Represents a subset of the
configuration of an InTrust
scheduled task.

Represents the security settings
for performing repository
indexing.

Represents a transport type
supported by InTrust event
forwarding.

Provides a collection of all
transport types supported by
InTrust event forwarding.

IActiveDirectorySiteSiteObject

Represents an Active Directory site from which to put computers in an InTrust site.

InTrust 11.6.0 SDK Reference
Interfaces

55

ISiteComputerCollection.htm
IIndexBuilderAccess.htm

Methods

Domain (getter)

Returns the domain of the site.

Syntax

HRESULT Domain (
[out, retval]l]BSTR* bstrDomain
)

Parameter
Name Type Meaning
bstrDomain BSTR* Domain of the site.

Domain (setter)

Sets the domain of the site.

Syntax

HRESULT Domain (
[in]BSTR bstrDomain
)

Parameter
Name Type Meaning
bstrDomain BSTR Domain of the site.
Site (getter)

Returns the name of the site.

Syntax

HRESULT Site(
[out, retval]lBSTR* bstrSite
)i

Parameter
Name Type Meaning
bstrSite BSTR* Name of the site.

InTrust 11.6.0 SDK Reference
Interfaces

56

Site (setter)

Sets the name of the site.

Syntax

HRESULT Site(
[in]BSTR bstrSite
)7

Parameter
Name Type Meaning
bstrSite BSTR Name of the site.

IBulkEventWithReadExtensions

Use this interface to represent the results of a repository search as an array of event_with_read_extensions
structures.

Method

GetRecords

Gets records represented by event_with_read_extensions structures.

Syntax

GetRecords (
[out, retval] SAFEARRAY (struct event with read extensions)* events
)7

Parameter
Name Type Meaning
events SAFEARRAY(struct event_with_read__ Records represented by event_with_read_extensions
extensions)* structures.

IBulkRecord

Represents a batch of repository records as an array of record structures for writing.

InTrust 11.6.0 SDK Reference
Interfaces

Method

GetRecords

Gets records that match search term