
Foglight® 5.9.x

Data Model Guide

© 2018 Quest Software Inc.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a
software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the
applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use without the written
permission of Quest Software Inc.

The information in this document is provided in connection with Quest Software products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest
Software products. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE
AGREEMENT FOR THIS PRODUCT, QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO
EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN
IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the
right to make changes to specifications and product descriptions at any time without notice. Quest Software does not make any
commitment to update the information contained in this document.

If you have any questions regarding your potential use of this material, contact:

Quest Software Inc.
Attn: LEGAL Dept.
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our website (https://www.quest.com) for regional and international office information.

Patents

Quest Software is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current
information about applicable patents for this product, please visit our website at https://www.quest.com/legal.

Trademarks

Quest, the Quest logo, and Join the Innovation are trademarks and registered trademarks of Quest Software Inc. For a complete
list of Quest marks, visit https://www.quest.com/legal/trademark-information.aspx. “Apache HTTP Server”, Apache, “Apache
Tomcat” and “Tomcat” are trademarks of the Apache Software Foundation. Google is a registered trademark of Google Inc.
Android, Chrome, Google Play, and Nexus are trademarks of Google Inc. Red Hat, JBoss, the JBoss logo, and Red Hat Enterprise
Linux are registered trademarks of Red Hat, Inc. in the U.S. and other countries. CentOS is a trademark of Red Hat, Inc. in the
U.S. and other countries. Fedora and the Infinity design logo are trademarks of Red Hat, Inc. Microsoft, .NET, Active Directory,
Internet Explorer, Hyper-V, Office 365, SharePoint, Silverlight, SQL Server, Visual Basic, Windows, Windows Vista and Windows
Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. AIX,
IBM, PowerPC, PowerVM, and WebSphere are trademarks of International Business Machines Corporation, registered in many
jurisdictions worldwide. Java, Oracle, Oracle Solaris, PeopleSoft, Siebel, Sun, WebLogic, and ZFS are trademarks or registered
trademarks of Oracle and/or its affiliates in the United States and other countries. SPARC is a registered trademark of SPARC
International, Inc. in the United States and other countries. Products bearing the SPARC trademarks are based on an architecture
developed by Oracle Corporation. OpenLDAP is a registered trademark of the OpenLDAP Foundation. HP is a registered
trademark that belongs to Hewlett-Packard Development Company, L.P. Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both. MySQL is a registered trademark of MySQL AB in the United States, the European Union
and other countries. Novell and eDirectory are registered trademarks of Novell, Inc., in the United States and other countries.
VMware, ESX, ESXi, vSphere, vCenter, vMotion, and vCloud Director are registered trademarks or trademarks of VMware, Inc.
in the United States and/or other jurisdictions. Sybase is a registered trademark of Sybase, Inc. The X Window System and UNIX
are registered trademarks of The Open Group. Mozilla and Firefox are registered trademarks of the Mozilla Foundation. “Eclipse”,
“Eclipse Foundation Member”, “EclipseCon”, “Eclipse Summit”, “Built on Eclipse”, “Eclipse Ready” “Eclipse Incubation”, and
“Eclipse Proposals” are trademarks of Eclipse Foundation, Inc. IOS is a registered trademark or trademark of Cisco Systems, Inc.
and/or its affiliates in the United States and certain other countries. Apple, iPad, iPhone, Mac OS, Safari, Swift, and Xcode are
trademarks of Apple Inc., registered in the U.S. and other countries. Ubuntu is a registered trademark of Canonical Ltd. Symantec
and Veritas are trademarks or registered trademarks of Symantec Corporation or its affiliates in the U.S. and other countries.
OpenSUSE, SUSE, and YAST are registered trademarks of SUSE LCC in the United States and other countries. Citrix, AppFlow,
NetScaler, XenApp, and XenDesktop are trademarks of Citrix Systems, Inc. and/or one or more of its subsidiaries, and may be
registered in the United States Patent and Trademark Office and in other countries. AlertSite and DéjàClick are either trademarks
or registered trademarks of Boca Internet Technologies, Inc. Samsung, Galaxy S, and Galaxy Note are registered trademarks of
Samsung Electronics America, Inc. and/or its related entities. MOTOROLA is a registered trademarks of Motorola Trademark
Holdings, LLC. The Trademark BlackBerry Bold is owned by Research In Motion Limited and is registered in the United States
and may be pending or registered in other countries. Quest is not endorsed, sponsored, affiliated with or otherwise authorized by
Research In Motion Limited. Ixia and the Ixia four-petal logo are registered trademarks or trademarks of Ixia. Opera, Opera Mini,
and the O logo are trademarks of Opera Software ASA. Tevron, the Tevron logo, and CitraTest are registered trademarks of
Tevron, LLC. PostgreSQL is a registered trademark of the PostgreSQL Global Development Group. MariaDB is a trademark or
registered trademark of MariaDB Corporation Ab in the European Union and United States of America and/or other countries.
Vormetric is a registered trademark of Vormetric, Inc. Intel, Itanium, Pentium, and Xeon are trademarks of Intel Corporation in the
U.S. and/or other countries. Debian is a registered trademark of Software in the Public Interest, Inc. OpenStack is a trademark of
the OpenStack Foundation. Amazon Web Services, the “Powered by Amazon Web Services” logo, and “Amazon RDS” are
trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries. Infobright, Infobright Community
Edition and Infobright Enterprise Edition are trademarks of Infobright Inc. POLYCOM®, RealPresence® Collaboration Server, and
RMX® are registered trademarks of Polycom, Inc. All other trademarks and registered trademarks are property of their respective

https://www.quest.com
https://www.quest.com/legal
https://www.quest.com/legal/trademark-information.aspx

owners.

Foglight Data Model Guide
Updated - May 2018
Software Version - 5.9.x

Legend

WARNING: A WARNING icon indicates a potential for property damage, personal injury, or death.

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data if instructions are not followed.

IMPORTANT NOTE, NOTE, TIP, MOBILE, or VIDEO: An information icon indicates supporting information.

Contents
The Foglight data model . 8

What are models? . 8

Who needs to know about models? . 9

Modeling process overview . 9

Where can I see the models? . 10

Topology type definitions in XML . 11

Schema browser . 11

Data dashboard . 11

How are models organized? . 12

Where can I see the data model hierarchy? . 12

What internal models are created? . 13

What other models are created? . 13

What is in “Model Roots”? . 13

How are Foglight 4 agents represented? . 13

Why might I need to navigate models? . 14

How do I create a model? . 14

How do I delete a model? . 14

What are domains? . 14

Example: the Host Model structure . 15

What is a data source? . 16

What are “KnowledgeItems”? . 17

Data modeling tutorials . 19

Modeling example: The org chart . 19

Defining the org structure types . 20

Populating the model using a script . 27

Connecting “Employees” to Host objects . 29

Visualizing the data . 29

Appendix: Groovy scripts . 30

createOrg Groovy script . 30

Appendix: Internal database schema . 35

acl_class Table . 39

acl_entry Table . 39

acl_object_identity Table . 39

acl_sid Table . 40

agent_client_defaults Table . 40

agent_config_binder Table . 40

agent_dc_manager_schedule_ids Table . 40

agent_dc_manager_state Table . 41

agent_manager_state Table . 41

alarm_alarm Table . 42

alarm_annotations Table . 42
Foglight 5.9.x Data Model Guide
Contents

4

alarm_loc_msg Table . 43

auditing_log Table . 43

baseline_config Table . 43

baseline_config_properties Table . 44

baseline_engine_profile Table . 44

baseline_observation_profile Table . 44

cartridge_cartridge_relation Table . 45

cartridge_components Table . 45

cartridge_installed_cartridges Table . 46

cartridge_items Table . 46

credential_data Table . 47

credential_lockbox Table . 47

credential_mapping Table . 48

credential_mapping_entry Table . 48

credential_order Table . 48

credential_policy Table . 49

current_version Table . 49

database_instance_id Table . 49

database_version Table . 50

derivation_calculation Table . 50

derivation_complex_definition Table . 50

derivation_definition Table . 51

fgl4_migration_agent Table . 51

fgl4_migration_data_span Table . 51

fgl4_migration_dcm Table . 51

fgl4_migration_host Table . 51

fgl4_migration_host_mapping Table . 51

fgl4_migration_log Table . 52

fgl4_migration_server Table . 52

incident_affected_objects Table . 52

incident_incident Table . 52

incident_linked_alarms Table . 53

incident_problem_ticket Table . 53

incident_problem_tickets Table . 53

licensing_licenses Table . 53

mgmt_object_size Table . 54

mgmt_observation_size Table . 54

mgmt_timeslice Table . 55

mgmt_timeslice_data_avail Table . 55

model_association Table . 56

model_property_formula Table . 56

model_query_criteria Table . 56

obs_binary_* Tables . 57

obs_metric_aggregate_* Tables . 57

obs_metric_scalar_* Tables . 58

obs_string_* Tables . 58

pcm_encoded_data Table . 59

persistable_config_model Table . 59
Foglight 5.9.x Data Model Guide
Contents

5

persistable_script Table . 60

persistence_column_mapping Table . 60

persistence_db_column Table . 61

persistence_db_schema Table . 61

persistence_db_table Table . 61

persistence_grouping_policy Table . 62

persistence_lifecycle Table . 62

persistence_lifecycle_period Table . 63

persistence_obs_key_purge_age Table . 63

persistence_obs_purge Table . 63

persistence_obs_purge_age Table . 64

persistence_observation_index Table . 64

persistence_operation Table . 64

persistence_retention_policy Table . 65

persistence_rollup_progress Table . 65

persistence_rollup_retry Table . 66

persistence_storage_config_xml Table . 66

persistence_storage_manager Table . 66

persistence_timeslice_table Table . 67

persistence_topobj_purge_age Table . 67

persistence_type_hierarchy Table . 67

registry_performance_calendar Table . 68

registry_registry_value Table . 68

registry_registry_variable Table . 68

report_output Table . 69

report_schedule Table . 69

rule_action_handler Table . 70

rule_action_message Table . 70

rule_action_registry_reference Table . 71

rule_action_variable_reference Table . 71

rule_blackout_schedules Table . 71

rule_effective_schedules Table . 71

rule_expression Table . 72

rule_firing_strategy Table . 72

rule_messages Table . 72

rule_rule Table . 72

rule_sev_to_clear_actn_hndlr Table . 73

rule_sev_to_fire_actn_hndlr Table . 74

rule_severity Table . 74

rule_severity_expression Table . 74

rule_severity_messages Table . 75

schedule_named_schedule Table . 75

script_annt Table . 75

script_annt_attr Table . 76

script_argument Table . 76

script_argument_annt Table . 76

script_argument_annt_attr Table . 77

script_example Table . 77
Foglight 5.9.x Data Model Guide
Contents

6

script_return_annt Table . 77

script_return_annt_attr Table . 78

sec_group Table . 78

sec_group_nesting Table . 78

sec_group_role_match Table . 78

sec_grouprole Table . 78

sec_jaas_source Table . 79

sec_object Table . 79

sec_object_mask Table . 80

sec_object_permission Table . 80

sec_object_type Table . 80

sec_permission Table . 81

sec_permission_def Table . 81

sec_policy Table . 81

sec_resource Table . 82

sec_role Table . 82

sec_user_alias Table . 82

sec_user_obj_permission Table . 82

sec_user_res_permission Table . 83

sec_usergroup Table . 83

sec_userrole Table . 83

sec_x_attribute Table . 84

sec_x_attribute_value Table . 84

tagging_service_mapping Table . 84

threshold_bound Table . 84

threshold_config Table . 85

topology_activity_calendar Table . 85

topology_activity_upgrade Table . 86

topology_object Table . 86

topology_object_history Table . 87

topology_property Table . 87

topology_property_annotation Table . 87

topology_property_history Table . 88

topology_property_name Table . 88

topology_property_value Table . 88

topology_service_state Table . 89

topology_type Table . 89

topology_type_annotation Table . 89

topology_type_history Table . 90

upgrade_pending_operations Table . 90

wcf_groups_by_cartridges Table . 90

wcf_resources Table . 91

About Us . 92

We are more than just a name . 92

Our brand, our vision. Together. . 92

Contacting Quest . 92

Technical support resources . 92
Foglight 5.9.x Data Model Guide
Contents

7

1

The Foglight data model

This topic provides an introduction to models and discusses the Foglight data model.

• What are models?

• Who needs to know about models?

• Where can I see the models?

• How are models organized?

• What are domains?

• What is a data source?

• What are “KnowledgeItems”?

What are models?
In general, models are abstractions that capture the essence of the objects they are supposed to represent. A
good model looks and behaves like the real thing, at least in certain ways. If a model were perfect in every respect,
it would be indistinguishable from the real thing. Thus, we could pose questions, submit these in some way to the
model, and obtain the same, or almost the same, results as we would by doing those things to the real object. If
the object under consideration undergoes a change, the model would have to change accordingly in order to
faithfully represent that object.

The data model used in the Management Server is constructed to do just that. The data sent to the Management
Server changes with time, not only because the measurements on properties change, but because the objects
themselves may come and go. So, a data model for use with the Management Server must be designed to
accommodate the creation of objects, by placing them in a well-designed model hierarchy. Objects have
relationships among themselves, and a good model accounts for those relationships.

To the Management Server, models are collections of related data objects. The totality of data objects in existence
at any one time is referred to as the “data model”.

• Objects are created by transforming the raw data collected by agents (collection models) or when services
are created, deleted, or modified (service models).

• Objects have properties, such as lists and metrics (time series values). Properties may be simple values,
but often they are other objects. Being objects, they can have properties that are objects, and these objects
may have the starting object as a property. Thus, the relationships form a graph, not a tree.

• Data models can be organized into sub-modules, for instance:

▪ HostModel represents a collection of agents on a host.

▪ Windows_System represents a Windows® System agent.

▪ Physical_Disk represents a disk.

NOTE: Data objects having other data objects as properties can be a source of confusion when you
attempt to drill down into an object’s properties using a data browser. It is possible to encounter a
loop of related properties that the data viewer (a tree of nodes) unwinds into a seemingly endless
chain of repeating properties. When using the data browser, it is seldom productive to go more than
five levels deep. After that, it is likely that you are in an unwound loop.
Foglight 5.9.x Data Model Guide
The Foglight data model

8

• Raw data can be modeled in different ways.

• You can examine the data model’s static skeleton (the defined data types and their inter-relationships) in
the Schema Browser.

• You can examine the dynamic data objects in the data browser (Dashboards > Configuration > Data >
Management Server > All Data).

Who needs to know about models?
Knowledge of the data model is beneficial if you are performing one of the tasks listed in the following table.

Modeling process overview
In this guide, modeling refers to the process of creating new in-memory models. This process can include the
creation of:

• A static framework of types and their relationships

• New types when they become needed

• Transformations to create the types as a result of data arrival or model changes

• Instances of those types

IMPORTANT: Attempting to diagram the data model using these views can entail considerable work.
Models should be regarded as being internal to the Management Server.

Table 1. Who needs to know about models?

Extending the
model

You might want to add an extra metric to the system, extend an existing
collection, or monitor a new and currently unsupported application.

Using the query
language to build a
new UI query

You need to understand the data model to construct a path to the data objects of
interest.
If you want to write a query to return all the instances of an object of a certain
type about which the Management Server currently knows, you can locate them
in the data model. Some objects are deeply nested; construct the most efficient
path to them.

Building your own
dashboards

If you intend to design and build your own dashboards, you need to know what
the existing data model can supply. Because the Management Server is an open-
ended data modeler, it is possible with sufficient effort to build a new data
collection framework from the ground up.
In brief, the process of building a new data collection framework is as follows:

• If the data is not already available from existing agents, create an agent to collect
the data and install it on target systems. One way is to create a formatted script
that writes to STDOUT, upload the script, build a script agent, and then deploy and
activate the agent. Consult Quest’s Professional Services organization.

NOTE: You can use any executable on the client system that writes to STDOUT. All you
need is a script to launch the application.

• Configure the transformation layer that creates typed objects to hold the data and
define the interrelationships between data types. Tools: XML and Groovy.

Design and build the dashboards to present the data in the Management Server
using WCF. Tool: the component editors in Definitions. Resources: the Web
Component Tutorial and the Web Component Reference pages.
Foglight 5.9.x Data Model Guide
The Foglight data model

9

• Dashboards and monitoring policies to work on those types

The modeling process is illustrated in the following diagram.

Figure 1. Modelling process

You develop models to organize and convey the relationships that exist among the pieces of monitoring data, so
that they can be presented visually in dashboards.

The first step in the modeling process is to define the static types that are used to represent the data. These form
the core data types of the data model. Once these types are defined, it is possible to represent them in a schema,
and these types can be seen in the Schema Browser dashboard.

You define types by creating a topology type XML file. You can deploy the XML file to the Management Server
using the administration UI. The Management Server handles versioning of the types.

The second step in the modeling process is to define instances of those types. Currently, you can only create
instances of types using Groovy scripts.

The third step in the modeling process is to create dashboards using WCF. You can perform dashboard creation
with just the types deployed, as long as the type definitions include metric definitions. However, it is difficult to test
the dashboards without instances.

Once you have built dashboards and they are operating on test data, it is time to start using agents and enable
transformations (fourth step in the modeling process). The transformations translate collected data into the
topology object instances specified in the second step.

Ideally, the final-form agent is feature complete and collecting data when you reach this step.

Where can I see the models?
The following sections present additional model-related information.

• Topology type definitions in XML
Foglight 5.9.x Data Model Guide
The Foglight data model

10

• Schema browser

• Data dashboard

Topology type definitions in XML
Most core model type definitions are available as XML files in the Management Server’s config directory.

• The topology-types.xml file contains the core types.

• The host-topology-types.xml file contains the host model topology types.

• The forge-topology-types.xml file contains types for the server’s self-monitoring.

• The foglight4-topologytypes.xml file contains types related to the conversion from Foglight 4 to Foglight 5,
and related to the Foglight4Model.

Schema browser
Use the Schema Browser dashboard to view information about the available data types, their relationships in the
data model, properties, and object instances. This dashboard can help you to better understand the data model
structure and learn about existing object dependencies.

For more information about the Schema Browser, see the Foglight Dashboard Support Guide.

Data dashboard
The Data dashboard shows the models’ organization, with related sub-models grouped together. For example, all
Host instances are available in a Hosts model at the top level; all Foglight 4 converted agents are available in a
Foglight4Model; and all services are available together in the Services model.

The Data dashboard:

• Shows the raw underlying set of objects.

• Is organized around a root, like a file system.

• Indicates the path to objects so that you can use the paths to define WCF queries.

• Shows objects and views for objects of that type.

• Includes a property viewer for looking at the details.

• Contains data browser views for F4 tables.

Use the Data dashboard to see models as they are organized in the Management Server.

To access the Data dashboard:

• In the navigation panel, under Dashboards, navigate to Configuration > Data.

The Data dashboard appears.

The Data dashboard consists of a model/object selector on the left and a view on the right. The view on the right is
based on the type of object you select. There are default viewers for looking at objects (Property Viewer), lists (List
Viewer), and metrics (Metric Viewer). If a user creates a view that takes a particular type as input (for example,
Host), then that view is available for use in the Data browser when that type is chosen. The most useful view for
inspecting an object is the Property Viewer, which shows the properties and values for the currently selected
object. The Property Viewer shows the raw object details (property values and metrics).

NOTE: The Schema Browser does not show how models are organized inside the Management Server.
Use the Data Browser to see that organization.
Foglight 5.9.x Data Model Guide
The Foglight data model

11

How are models organized?
In the Data dashboard, the top-level nodes are based on root queries. The entries that appear in the Data tree are
instances of the types defined in the data model. Thus, not all defined types appear, but only those types for which
Agents have created at least one instance.

These queries are defined in modules and they use the module name as the node name. There are several nodes
that are always present because they are root queries defined in the Management Server. Other nodes may be
present. They originate from root queries defined in cartridges that have been installed on the Management
Server.

Some examples are:

• Alarms — Current Alarms and Outstanding Alarms

• Hosts — All Hosts

• Management Server — All Agents, All Data, Schema, and Servers

• Services — All Model Roots, All Object Groups, All Service Categories, All Services, and All System
Services

• Other nodes, depending on the cartridges that have been installed

For example, the common Host model is a topology model defined in the Management Server to describe the host
objects being monitored. The use of a common model allows the Management Server to provide out-of-the-box
configuration for visualizing hosts that could be monitored by any type of agent.

For more information, see:

• Where can I see the data model hierarchy?

• What internal models are created?

• What other models are created?

• What is in “Model Roots”?

• How are Foglight 4 agents represented?

• Why might I need to navigate models?

• How do I create a model?

• How do I delete a model?

Where can I see the data model hierarchy?
All data models have a root. In the Management Server’s user interface, Dashboards > Configuration > Data >
Management Server > All Data is considered the root (“/”) in the dashboard framework. The All Data node contains
references to the ModelRoot topology instances. A data object shows up under Management Server > All Data if it
is defined in topology-types.xml file.

While it is possible for a cartridge to add a root property by explicitly defining the property in the cartridge’s
topology-types.xml file, changing types in this way is not encouraged. It is better for the cartridge to provide a new
model root, so that a property is added automatically.

The cartridge can do this by defining a topology type in its schema that extends the core "ModelRoot" type. For
example:

<type name="MyModelRoot" extends="ModelRoot">

When the new root type is created, the server automatically adds a corresponding property to the Root type that
returns instances of that model root. The cartridge then needs to create a single instance of that type and
reference the top-level domain objects. The topology types used for top-level domain objects should be annotated
with the core "DomainRoot" annotation, so that they can be configured with the admin grouping functionality. For
more information about domains, see the What are domains? topic.
Foglight 5.9.x Data Model Guide
The Foglight data model

12

For example:

<type name="MyModelRoot" extends="ModelRoot">
 <property name="topLevelObjects" type="MyTopLevelObject" is-many="true"/>
</type>
<type name="MyTopLevelObject" extends="TopologyObject">
 <annotation name="DomainRoot"/>
</type>

What internal models are created?
The Management Server builds internal models for its own activities.

What other models are created?

What is in “Model Roots”?
The ModelRoots property is essentially a collection of all the ModelRoot instances on the system. This is a
subset of the other root properties, because some model roots are not instantiated if the cartridge is not being
actively used. The ModelRoots and ModelInstances properties should not be used (especially when
developing dashboards) because it is more efficient to use the root property that was added for specific
ModelRoot types.

Cartridge developers can add their own element to ModelRoots by extending a special class called
CollectionModelRoot.

How are Foglight 4 agents represented?
Foglight 4 agents are represented as follows:

• Foglight 4 organizes data as tables inside agents running on hosts in an IPMap.

Table 2. Management Server internal models

Model Name Description

Alarms Contains all alarms.

All Type Instances Contains a hierarchy of types with instances; similar to schema
browser.

FSMServers,
FSMDatabases

Contains the internal Management Server and database models for
self-monitoring.

Model Summary Collects metrics on all models in Model Roots.

Table 3. Other models created

Model Name Description

AgentMap Contains all agents.

FSMServiceRoot Contains the service model.

ServiceLevelPolicies Contains all service level policy objects.
Foglight 5.9.x Data Model Guide
The Foglight data model

13

• Foglight 5 creates objects that mimic this: F4Host, F4Agent, and F4Table.

• Tooling converts the F4 DCMs into these classes.

• Data shows up under All Collections > IPMap.

• One object instance per sample, for example, one object for C:, another for D:.

Why might I need to navigate models?
You need to understand the model when building a query to return data. Alternatively, you might need to construct
a path to a particular property of an object. The object lives in data model space; typically, there is more than one
pathway to access it. You will want to choose the most efficient of these.

How do I create a model?
The simplest way to create a model is as follows:

1 Diagram the model and analyze it for flaws.

2 Create the cartridgename-topology-types.xml file for all the data types and their relationships in the model.

3 Populate the model using a Groovy script.

How do I delete a model?
• The Data Management dashboard allows objects to be deleted.

• Only items from ModelRoots can be deleted.

• If data is being collected, delete is not destructive, and

▪ The object is recreated

▪ Metrics are reconnected

▪ Agent instances are more difficult to recreate. Avoid deleting them.

What are domains?
A domain is a specific technology or part of your environment that you are interested in monitoring and for which
data is collected and model instances are built.

The Domains dashboard presents an overview of all domains for which you can collect data. It summarizes the
state of all monitored domains and allows you to drill down on a specific domain and investigate problems related
to it. For more information about monitoring domains, see the Foglight User Guide.

NOTE: You can name the XML file as best fit for your model. The type definitions are merged into the
server, but the XML file is not retained on the server, so there is no possibility of a name clash with
XML files existing on the server. Once the cartridge development gets to the stage where there are
several artifacts (for example, monitoring policy files, WCF modules, etc.) the cartridgename-
topology-types.xml file is added to a cartridge along with the other components.
Foglight 5.9.x Data Model Guide
The Foglight data model

14

Example: the Host Model structure
Besides its central importance, the Host Model serves as the prime example for understanding parts of the overall
data model.

Host Model structure
The following diagram illustrates the topology types that are used in the construction of the host model and the
arrangements of those types.

Figure 2. Host Model diagram

The Host type is the root of the model. Instances of this type are identified by the name property which is typically
set with the fully qualified domain name of the host.

The Host object contains an aggregate node to group related components. There is a single aggregate node to
summarize the state and performance of the host’s memory, processor, storage and network components. The
aggregate nodes may then contain other objects to provide a breakdown of the aggregate information.

Agents running on a host are referenced from the corresponding Host object, but do not form part of the host
model and do not contribute to the state of the host model itself. That is, there may exist a host that is running an
agent that encounters a fatal error. In this case, the Host object in the topology remains in the normal state and
references the Agent object that encountered the error. The Host objects only change state because of host-
specific rules (for example, CPU utilization).

Host Model creation
The common host model can be created from many different sources. One common source is the operating
system cartridge, which contains canonical data transformations (CDTs) to create the host model from the data
submitted by their agents. This information is transformed via CDTs to produce the physical host model objects
and to populate the metrics. Script agents must use CDTs to convert their data into a host model. Another common
source is the infrastructure cartridge, which uses the agent manager API to construct the host model directly in
Java® code, without requiring a CDT. The host model is also created for virtual machines by the VMware® and
Hyper-V® cartridges.

Extending the Host Model
Agents can capture host-related data that cannot be stored on the types defined in the common host model. The
host model types must not be sub-typed to add support for this data because the types must be known in order for
multiple cartridges to share the model. The host model may be extended through composition by adding instances
of cartridge-specific types to the detail collection that is exposed on all host model objects.
Foglight 5.9.x Data Model Guide
The Foglight data model

15

Common Host Model types
The host model defines the following topology types: Host, Memory, HostCPUs, Processor, HostStorage,
PhysicalDisk, LogicalDisk, HostNetwork, NetworkInterface, OperatingSystem, HostProcess, and HostService.

• There is a single Memory object attached to a host that is identified by that Host instance. The name
property of a Memory object is set with the constant string “Memory”.

• There is a single HostCPUs instance attached to a Host that provides host level summary metrics for the
processors on a host. The HostCPUs instance is identified by the reference to the associated Host object
and has its name set with the constant string “CPUs”.

▪ The Processor type is used to represent a logical CPU that is available on the Host.

• There is a single HostStorage instance attached to a host that provides host level summary metrics for
the logical and physical disks on the host. The HostStorage instance is identified by the reference to the
associated Host object and has its name set with the constant string “Storage”.

Some metrics are produced by derived metrics. The disk metrics are calculated based on the values
provided for the associated PhysicalDisk objects. The space metrics are calculated based on the values
provided for the LogicalDisk objects.

▪ The PhysicalDisk represents a disk that is installed in the machine or configured for a virtual
machine.

▪ The LogicalDisk type is used to represent a Windows® partition or Unix® filesystem. These
types have the same set of observations.

• There is a single HostNetwork instance attached to a host that provides host level summary metrics for
the network interfaces on the host. The HostNetwork instance is identified by the reference to the
associated Host object and has its name set with the constant string “Network”.

The observations on the HostNetwork type are all produced by derived metrics. These derived metrics
calculate the value of a metric from the associated NetworkInterface objects.

▪ The NetworkInterface type is used to represent a network interface that is installed in the
machine or configured for a virtual machine.

• There is a single instance of the OperatingSystem type attached to a host. The instance is identified by
the reference to that Host, and has the following child object types that provide additional details about the
operating system (OS):

▪ The HostProcess type captures aggregate metrics for all processes of a given type on the host.
The instances complex observation captures the detailed per-process statistics, but that
observation may not be produced at all times.

▪ The HostService type captures information on the services configured to run on a Host and their
state.

What is a data source?
A data source is a container for a data model. For instance, the Monitoring data source is for modeling monitored
objects. It contains the data model. The Dashboards Meta Data source models the Web Component Framework
artifacts. Thus, the various data sources model different top-level data collections. Domains such as WebLogic,
which are closely bound to the monitoring model, are incorporated in the Monitoring data source.

If you are building dashboards for monitoring purposes, use the Monitoring data source.

The Data Sources dashboard is where you choose a data source. The default (and only current) option is the
foglight-5 data source. Click a data source to display its ID, name, and topology and UI query service names.

To display the Data Sources dashboard:

• From the navigation panel, under Dashboards, click Configuration > Data Sources.
Foglight 5.9.x Data Model Guide
The Foglight data model

16

The Data Sources dashboard appears.

Figure 3. Data Sources dashboard

Use the icons above the data sources to add , delete , copy , and edit them, and set a default

data source.

What are “KnowledgeItems”?
KnowledgeItem is a concept that allows users to attribute business-relevant information to their monitored
infrastructure. This information may include (but is not limited to) cost-center attributes, business unit associations,
or configuration and application management metadata.

The Management Server pre-defines an abstract type KnowledgeItem that contains basic information:

<type name='KnowledgeItem' extends='TopologyObject'>
 <annotation name='Abstract'/>
 <property name='asset' type='TopologyObject' is-identity='true'/>
 <property name='name' type='String'/>
 <property name='description' type='String'/>
</type>

Concrete instances of sub-types can be used to extend these knowledge items for a specific purpose (for
example, business unit information), and are linked to the corresponding monitored topology information via the
reference 'asset'.

The Management Server will offer management of these knowledge items in the UI in a later release. At the
moment, users should extend the KnowledgeItem type as desired, and create business-related knowledge
content and references in scripts.

The following is an example of a simple business-unit related knowledge item:

<types>
 <type name='AcmeBUKnowledgeItem' extends='KnowledgeItem'>
 <property name='lineOfBusiness' type='String'/>
 <property name='businessUnit' type='String'/>
 </type>
</types>

To add real value to this basic knowledge item, extend this type, by renaming and customizing it appropriately —
see <foglight_home>/extension/knowledge-items/acme-types.xml

The types-file can be imported into the model by copy and paste, or as a file upload in the Administration > Data
> Add Topology Type dashboard.

After users define various KnowledgeItems, other knowledge items instances can be created programmatically.
For example:

// run in script editor, assuming a target scope (the asset) is set
if (scope==null)
 return "No scope/asset to attach KI to"
ts = server.TopologyService;
t = ts.getType("AcmeBUKnowledgeItem");
ki = ts.getObjectShell(t);

CAUTION: If you click the Delete icon, the data source is removed without a confirmation dialog.
Foglight 5.9.x Data Model Guide
The Foglight data model

17

ki.set("asset", scope);
ki.set("name", "R&D Business Unit Asset #1");
ki.set("description", "Host hosting business unit R&D");
ki.set("lineOfBusiness", "Research");
ki.set("businessUnit", "R&D");
ts.mergeData([ki]);

The Management Server shows the KnowledgeItems in the model under Services > All Model Roots >
Knowledge Items and Root of Monitoring > KnowledgeItemModel >knowledgeItems. To see the data model
tree, in the navigation panel, under Dashboards, click Configuration > Data.

The server comes with an example that shows how to surface the knowledge items in the UI. The example
dashboard depends on a Acme example KnowledgeItem type (see <foglight_home>/extension/knowledge-
items/acme-types.xml) that first needs to be imported through the Add Topology Type dashboard. The example
dashboards can then be imported by using the following command:

fglcmd -cmd util:uiimport -f acme-dashboards.zip

When accessing the Service Operations Console (in the navigation panel, under Dashboards, click Services >
Service Operation Console), all Acme knowledge items for elements inside the selected service are then shown
in an extra tab, named ACME BU Knowledge Items.
Foglight 5.9.x Data Model Guide
The Foglight data model

18

2

Data modeling tutorials

This chapter provides a tutorial that walks you through the process of adding new functionality to Foglight, by
building new models and without changing the Foglight core code.

The technique for extending Foglight is shown in the following illustration.

Figure 1. Extending the Foglight model

The process consists of the following steps:

1 Define your new types.

2 Create your types through data — Groovy functions or agents.

3 Create dashboards based on your type instances.

4 Re-iterate (repeat Step 1 through Step 3) until you get the result you want.

Modeling example: The org chart
Foglight is not just a monitor, it is an object-oriented application server. Using Foglight’s modeling capabilities, you
can extend Foglight to model data from pretty much any domain.

This example walks you through an exercise that extends Foglight to represent a company’s Org structure. We
create the model, load it into the server, populate it using a Groovy script, and create some dashboards to
visualize the result:

• Defining the org structure types

• Populating the model using a script

• Connecting “Employees” to Host objects

• Visualizing the data

A company’s org chart shows all the different departments in the company, along with their relationships.

NOTE: If you make an error in your type definitions, you do not have to throw away your server. You
can change your definition on the fly, and Foglight adapts. There are also functions available to
remove the data. This means that it is possible to iterate over a model definition and work towards
the result you want. You do not have to sit down with a Unified Modeling Language (UML) tool for a
day or two.
Foglight 5.9.x Data Model Guide
Data modeling tutorials

19

Figure 2. The company org chart

To make this exercise interesting, we are going to model the org chart and the employee reporting hierarchy. Each
organization has a leader, and that leader has direct reports. Then, we are going to connect the IT department to
the actual IT infrastructure. The result is a meaningful org chart that shows the state of the IT and the root cause of
potential outages from an employee perspective.

Figure 3. The company org chart structure

Defining the org structure types
To demonstrate the power of models, we are going to create a company org structure inside Foglight.

The org structure consists of organizations that contain other organizations. The organizations are lead by
managers. The managers have direct reports.

We will create a model that represents these relationships, populate the model, then visualize it using dashboards.
Then, we will create a relationship between this Org Structure model and Host objects, to show how models can
be connected.

Org structure: Type hierarchy and relationship
There are three key types in our Org Structure example: Organization, Manager, and Employee. It seems natural
that a Manager should be a specialization of an Employee. It also seems natural that there is a relationship
between the organizations, and also between the employees.

As always with anything object-oriented, there are multiple ways to solve the problem of relationships between
objects. Here are the key relationships we want to maintain:
Foglight 5.9.x Data Model Guide
Data modeling tutorials

20

• We want to know what sub-organizations make up different organizations.

• We want to know who owns each organization.

• We want to know who works in each organization.

• We want to know who reports directly and indirectly to each manager.

• We want to be able to have managers who do not own an organization.

• We want the contact information for every employee.

To do that, we are going to create three objects: Organization, Manager, and Employee. Manager is a
subclass of Employee.

All the relationships we need are going to be modeled using three collections:

• Each Organization has a Manager defined by Organization.orgLeader.

• Each Organization has a list of child Organizations defined by Organization.childOrgs.

• Each Manager has a list of direct reports (Employee objects) defined by Manager.directReports.

Before we get into the type definitions for each of our three types, we need to figure out what defines the identity of
each type. In Foglight, identity is critical, because it determines when a new object is created.

In a real-world case, the identity of each employee is defined by an employee ID. For this example, we are going
to define the identity of an employee based on his or her first and last name. That feels like a unique value for an
individual, at least in a small organization. For Organization, we are going to define the identity based on the
name of the organization. The reasons behind choosing this option are explained in the following scenarios:

• If the identity of an organization included the name of the manager of the organization, what would happen
if we changed the organization’s leader? We would have a new organization, and that is not right. The
organization should remain unique, even if the manager changes.

• If the identity of an organization included the child organizations, then we would not be able to create
departments without changing the parent organization into a new instance.

• If the identity of a manager included the organization that he or she manages, then we would not be able to
handle promotions cleanly.

Therefore, we are going to use the following identity information for our types (as illustrated in the following
diagram):

• Employee: identity fields lastName and firstName.

• Manager: same identity as Employee, has a directReports collection of Employees.

• Organization: identity field orgName. Has an orgLeader link to the organization’s manager, and has a
childOrgs list of departments that make up the organization.

Figure 4. Organization structure

NOTE: You could also create an extra object, Department, as a subtype for Organization. But for this
example, we will keep things simple and create just the previously mentioned objects.
Foglight 5.9.x Data Model Guide
Data modeling tutorials

21

Now we can finally get started on creating some types inside Foglight. After designing the object/type hierarchy,
getting the types into Foglight is relatively easy.

Foglight model definition for org chart
Rather than examining the syntax for topology type definitions, we are going to study real examples.

In Foglight types, a type can extend another type. Most types extend TopologyObject in order to inherit alarm
propagation and roll-up features. Each type contains a set of properties. A property can be:

• A metric (that is, time-series data like “CPU Utilization”).

• A Java® type, like “String” or “Integer”.

• Another object.

• A collection of other objects.

The “Employee” type

We can get started by looking at the simplified definition for the Employee type. It contains two properties,
lastName and firstName:

<type name='Employee' extends='TopologyObject'>
 <property name='lastName' type='String' is-identity='true'/>
 <property name='firstName' type='String' is-identity='true'/>
</type>

To load this type definition:

1 On the navigation panel, under Dashboards, click Administration > Data > Add Topology Type.

The Add Topology Types dashboard appears.

2 In the Import From Text box, keep the pre-populated text in the dialog, and insert your type definition
between the <types></types> tags.

Figure 5. Add Topology Type dashboard

3 To validate the type definition, click Validate.

If the code passes the validation, the Successful dialog box appears, confirming the validation result.
Foglight 5.9.x Data Model Guide
Data modeling tutorials

22

4 Click Close.

5 To import the new type definition, click Import.

The Successful dialog box appears, confirming the result of importing the new type definition.

6 Click Close.

The Employee type definition is now part of the Foglight topology types. We should highlight the following
characteristics:

• Employee extends TopologyObject. This means that it inherits all the alarm roll-up capabilities that
most Foglight objects use. We want this capability because we want to be able to show the state of the
systems managed by an Employee.

• Both lastName and firstName are String properties.

• Both lastName and firstName are identity properties. This means that the combination of first and last
name define a unique Employee object instance. You can have two Employee objects with the same last
name, or the same first name. But the combination is considered unique.

Next, we are going to look at a slightly extended version of the Employee object:

<type name='Employee' extends='TopologyObject'>
 <property name='lastName' type='String' is-identity='true'/>
 <property name='firstName' type='String' is-identity='true'/>
 <property name='jobTitle' type='String'/>
 <property name='phoneNumber' type='String'/>
 <property name='emailAddress' type='String'/>
 <property name='organization' type='Organization'/>
 <property name='ownedItems' type='TopologyObject' is-many='true' is-
containment='true'/>
 <property name='interestingItems' type='TopologyObject' is-many='true' is-
containment='false'/>
</type>

This (partial) definition includes new properties, which hold basic contact information for each employee. We have
added jobTitle, phoneNumber, and emailAddress. These properties are a little different than lastName and
firstName. Specifically, they are not identity properties. What that means is:

• An Employee is not uniquely defined by his or her phone number, for example. A change to a
phoneNumber property does not create an Employee instance.

• Foglight automatically tracks changes to non-identity properties as topology changes. This means Foglight
notes the time of the change, and the old-new value pair. Therefore, we get the object change tracking for
free (for example, we can find out when an employee’s phone number changed).

The next interesting definitions are for ownedItems and interestingItems, which are used to model an
employee’s system responsibilities. If Bob in IT is responsible for three machines, we want to be able to represent
that relationship. We have chosen to add two collections to represent this relationship:

• ownedItems: represents those items for which an employee is responsible. The state of these items
impact the state of the employee. If Bob in IT has three machines, and one of them is in a Fatal state,
then the Employee object representing Bob is in a Fatal state. This is made to happen by setting is-
containment to true.

IMPORTANT: You can repeat this procedure as many times as you want. As you modify your type, Foglight
adapts. Later on you can add new fields, and they are added to the type definition. This is important to
understand. It means you can iterate over a type in a Foglight server without worrying about backing out the
older versions.

NOTE: To review the definitions for all the important types, including TopologyObject and Host, see
FGLHOME/config/topology-types.xml. To review the DTD definition for the topology type XML file format,
see FGLHOME/dtd/topology-types.dtd.
Foglight 5.9.x Data Model Guide
Data modeling tutorials

23

• interestingItems: represents things that an employee finds interesting, but for which they are not
responsible. This allows us to maintain a relationship between an employee and other things that does not
result in alarm state rolling up. This is made to happen by setting is-containment to false.

There is one last technique to show related to model definitions. The value of a property can be set at run-time by
agent or script, but we can also supply code to create a property. As a simple example, consider the fact that we
have stored lastName and firstName separately. It is likely that we want to put the two names together when
we build dashboards. To do that, we could add a fullName property that has a copy of the data in lastName and
firstName, but they might get out of sync. It makes much more sense for us to make fullName a derived
property, and to provide a Groovy code to calculate its value:

<property name='fullName' type='String'>
 <annotation name='DerivationExprType' value='Script'/>
 <annotation name='DerivationExpression'>
 <value>
 StringBuilder fullName = new StringBuilder();
 fullName.append(scope.get("firstName")).append(" ");
 fullName.append(scope.get("lastName"));
 return fullName.toString();
 </value>
 </annotation>
</property>

The code is straight forward and should be familiar to everyone who knows either Groovy or Java®. We are
building a string that puts the first and last names together, and returns that value. When we access fullName,
this script is run.

The “Manager” type

The Manager type extends Employee; its simplified definition contains one property, directReports.

<type name='Manager' extends='Employee'>
 <property name='directReports' type='Employee' is-many='true'/>
</type>

This adds the ability to have a list of direct reports. By setting the is-many attribute to true, we allow a Manager
to have zero or more Employees.

The “Organization” type

The Organization type (simplified) definition contains several properties:

<type name='Organization' extends='TopologyObject'>
 <property name='orgName' type='String' is-identity='true'/>
 <property name='orgLeader' type='Manager' is-containment='true'/>
 <property name='childOrgs' type='Organization' is-containment='true' is-
many='true'/>
</type>

An Organization inherits TopologyObject. Each Organization has an orgName that uniquely defines its
identity. All Organization instances must have different values for orgName.

Each Organization has a relationship with a Manager through the orgLeader property. Each Organization
can only have one manager. This might be a flaw in our model, but we will keep it as-is, for now. Also note that is-

NOTE: Both ownedItems and interestingItems are set to type TopologyObject. Remember that
TopologyObject is the base type for most objects in Foglight. By using this as the type for a collection, we are
allowing nearly any object to be added to the collection. In this case, it makes sense, as it allows for an
Employee to include services, hosts, application servers, databases, and agents in their ownedItems list.

NOTE: We need to emphasize that the value of an object’s Property can be produced by a Groovy
expression. This is a powerful capability. For example, you can create a property that finds all SQL Server®
database instances running on hosts that are also running WebLogic.
Foglight 5.9.x Data Model Guide
Data modeling tutorials

24

containment is set to true. This means that an Organization inherits the state of its Manager, who in turn
inherits the state of his or her Employees.

Each Organization also has a relationship with zero or more child Organization objects through the
childOrgs property. This property has is-many attribute set to true, in order to allow an Organization to have
zero or more child Organizations.

How models hang together
Objects can be created easily in Foglight. However, unless some thought is given to their structure, objects can be
easily lost or become orphans.

To find orphan objects:

1 On the navigation panel, under Dashboards, click Configuration > Data.

The Data Browser dashboard appears.

2 Expand the topology tree to show the Management Server > All Data > All Type Instances >
TopologyObject collection.

Figure 6. Expanded topology tree

Underneath this collection you can find the list of all instances organized by type.

3 Open TopologyObject > Sub Types, then (for example) open Organization to see all Organization
object instances.

But this is the hard way to find things. And if your objects are orphaned, you cannot write dashboards. What you
want to do is to anchor all your new objects into a collection somewhere. To do that, you need a type definition as
follows:

<type name='OrganizationModel' extends='ModelRoot'>
 <property name='organizations' type='Organization' is-many='true' is-
containment='true'/>
</type>

This creates a model that contains all Organization instances. As we create our objects (see Full definitions for
the org structure types), we need to make sure that we add them to OrganizationModel.organizations.
But how does this help? The key is the ModelRoot. This is a special marker class that tells Foglight to include this
model in the list of ModelRoots. This means it displays as shown in the following illustration.
Foglight 5.9.x Data Model Guide
Data modeling tutorials

25

Figure 7. OrganizationModel property in the topology tree

As a result of including something in ModelRoots, you can now refer to your model in a query like this:

/OrganizationModel/organizations

Full definitions for the org structure types
This section presents the full type definitions for the new topology types discussed in the previous sections.

<!DOCTYPE types SYSTEM "../dtd/topology-types.dtd">
<types>

<type name='Employee' extends='TopologyObject'>
 <property name='name' type='String' is-many='false' is-containment='false'>
 <annotation name='DerivationExprType' value='Script'/>
 <annotation name='DerivationExpression'>
 <value>
 StringBuilder name = new StringBuilder();
 name.append(scope.get("fullName")).append(" (");
 name.append(scope.get("jobTitle")).append(")");
 return name.toString();
 </value>
 </annotation>
 </property>
 <property name='lastName' type='String' is-identity='true'/>
 <property name='firstName' type='String' is-identity='true'/>
 <property name='fullName' type='String'>
 <annotation name='DerivationExprType' value='Script'/>
 <annotation name='DerivationExpression'>
 <value>
 StringBuilder fullName = new StringBuilder();
 fullName.append(scope.get("firstName")).append(" ");
 fullName.append(scope.get("lastName"));
 return fullName.toString();
 </value>
 </annotation>
 </property>
 <property name='jobTitle' type='String'/>
 <property name='phoneNumber' type='String'/>
 <property name='emailAddress' type='String'/>
 <property name='organization' type='Organization'/>
Foglight 5.9.x Data Model Guide
Data modeling tutorials

26

 <property name='ownedItems' type='TopologyObject' is-many='true' is-
containment='true'/>
 <property name='interestingItems' type='TopologyObject' is-many='true' is-
containment='false'/>
</type>

<type name='Manager' extends='Employee'>
 <property name='directReports' type='Employee' is-many='true'/>
 <property name='name' type='String' is-many='false' is-containment='false'>
 <annotation name='DerivationExprType' value='Script'/>
 <annotation name='DerivationExpression'>
 <value>
 StringBuilder name = new StringBuilder();
 name.append(scope.get("fullName")).append(": ");
 name.append(scope.get("jobTitle")).append(" of ");
 name.append(scope.get("organization").get("orgName"));
 return name.toString();
 </value>
 </annotation>
 </property>
</type>

<type name='Organization' extends='TopologyObject'>
 <property name='name' type='String' is-many='false' is-containment='false'>
 <annotation name='DerivationExprType' value='Script'/>
 <annotation name='DerivationExpression'>
 <value>
 StringBuilder name = new StringBuilder();
 name.append(scope.get("orgName")).append(": ");
 name.append(scope.get("orgLeader").get("fullName")).append(" ");
 return name.toString();
 </value>
 </annotation>
 </property>
 <property name='orgName' type='String' is-identity='true'/>
 <property name='orgLeader' type='Manager' is-containment='true'/>
 <property name='childOrgs' type='Organization' is-containment='true' is-
many='true'/>
</type>

<type name='OrganizationModel' extends='ModelRoot'>
 <property name='organizations' type='Organization' is-many='true' is-
containment='true'/>
</type>

</types>

Populating the model using a script
So far we have built some sophisticated types. To create instances, we have the following options:

• Create an agent.

• Create a script to load some data.

For this exercise, we will choose the second option (which allows us to get started much faster), and run the
createOrg Groovy script in the script editor. This script populates our Org Chart model with interesting data.

The most important part of that script is the following function, which allows you to create an object and set
properties on the object:
Foglight 5.9.x Data Model Guide
Data modeling tutorials

27

def createOrUpdateObject(typeName, propertyValues) {
 topSvc = server.TopologyService;

 def type = topSvc.getType(typeName);
 objShell = topSvc.getObjectShell(type);
 propertyValues.each ({propertyName, propertyValue ->
 def prop = type.getProperty(propertyName);
 if (!prop.isMany()) {
 objShell.set(prop, propertyValue);
 }
 else if (propertyValue instanceof Collection) {
 objShell.getList(prop).addAll(propertyValue);
 }
 else {
 objShell.getList(prop).add(propertyValue);
 }
 });
 return topSvc.mergeData(objShell);
}

This function uses the topology service to create or update an object instance. To do that, it requires a typeName
and a collection of propertyValues. The typeName is used to create a potential instance of an object of that
type. The TopologyService is used to create the instance. The propertyValues are a map of (name, value)
pairs. The script iterates over the properties, inspects each one and tries to set that property on the object using
the appropriate API.

What happens at the end is critical. Using the topSvc.mergeData() call, we send a potential instance of an
object with several properties set. The TopologyService decides whether we need to create an object or simply
update the definition for an existing one.

The following is an example call to this function:

def appsDev1 = createOrUpdateObject("Employee", [lastName:"Nichy",
firstName:"Frederick"]);

This creates a new Employee object. When using this function, you must include all the identity properties at
least. You can include additional properties if you want.

Here is another example:

def appsDev1 = createOrUpdateObject("Employee", [lastName:"Nichy",
firstName:"Frederick", jobTitle:"Senior App Support", phoneNumber:"416-555-1354",
emailAddress:"frederick.nichy@mycloud.com"]);

With this function we almost have everything we need to create models using scripts. In order to enable iterative
development, we need a way to delete old object instances. In this way, we can create a re-entrant Groovy script
that cleans up obsolete objects.

The delete function is defined as follows:

def deleteObject(typeName, objName) {
 obj = createOrUpdateObject(typeName, objName);
 def args = [];
 args.add(obj);
 topSvc.deleteObjects(new HashSet(args));
}

Note that we use the createOrUpdateObject call to return the original object. Then we make a
TopologyService call to delete it.
Foglight 5.9.x Data Model Guide
Data modeling tutorials

28

Connecting “Employees” to Host objects
At the end of the script, there is a bit of code which allows you to connect the employees to Host systems. This
code simply finds some Host instances and manually attaches them to the employees. This code was included so
that we can verify whether the alarm propagation works properly.

In a real example, you can add a dashboard that would allow an employee to express interest in objects. Behind
the scenes, this dashboard would call code that looks something like this:

createOrUpdateObject("Employee", [lastName:"Nichy", firstName:"Frederick",
ownedItems:[topologyObject]]);

...where topologyObject is the object that the user has chosen as interesting. This is pretty much what is done
in the Services Operations Console. It is all done using Dashboards and Groovy.

Visualizing the data
The last step is to build dashboards to visualize the data. The createOrg Groovy script provided in the appendix
creates a nice organization.
Foglight 5.9.x Data Model Guide
Data modeling tutorials

29

3

Appendix: Groovy scripts

This appendix includes Groovy scripts used in the Data modeling tutorials.

createOrg Groovy script
Use the following script to populate with interesting data the Org Chart model presented in section Modeling
example: The org chart.

def createOrUpdateObject(typeName, propertyValues) {
 topSvc = server.TopologyService;

 def type = topSvc.getType(typeName);
 objShell = topSvc.getObjectShell(type);
 propertyValues.each ({propertyName, propertyValue ->
 def prop = type.getProperty(propertyName);
 if (!prop.isMany()) {
 objShell.set(prop, propertyValue);
 }
 else if (propertyValue instanceof Collection) {
 objShell.getList(prop).addAll(propertyValue);
 }
 else {
 objShell.getList(prop).add(propertyValue);
 }
 });
 return topSvc.mergeData(objShell);
}

def getObject(typeName, objectName) {
 return createOrUpdateObject(typeName, [name:objectName]);
}

def deleteObject(typeName, objName) {
 obj = createOrUpdateObject(typeName, objName);
 def args = [];
 args.add(obj);
 topSvc.deleteObjects(new HashSet(args));
}

// Delete old employees
deleteObject("Manager", [lastName:"Monkey", firstName:"Big"]);
deleteObject("Manager", [lastName:"Monkey", firstName:"Little"]);
deleteObject("Employee", [lastName:"Chimp", firstName:"Pamela"]);
deleteObject("Manager", [lastName:"Strumpet", firstName:"Crandell"]);
deleteObject("Manager", [lastName:"Jo", firstName:"Mo"]);
deleteObject("Manager", [lastName:"Skate", firstName:"Chip"]);
deleteObject("Manager", [lastName:"Randolph", firstName:"Feelie"]);
deleteObject("Manager", [lastName:"Loman", firstName:"William"]);
deleteObject("Manager", [lastName:"Joe", firstName:"Jaffa"]);
Foglight 5.9.x Data Model Guide
Appendix: Groovy scripts

30

deleteObject("Manager", [lastName:"Brickshaw", firstName:"Rick"]);
deleteObject("Manager", [lastName:"Beardly", firstName:"Sandals"]);

deleteObject("Employee", [lastName:"Nichy", firstName:"Frederick"]);
deleteObject("Employee", [lastName:"Froyd", firstName:"Ziggy"]);
deleteObject("Employee", [lastName:"Bonds", firstName:"Bartholomew"]);
deleteObject("Employee", [lastName:"Ruth", firstName:"Barbie"]);
deleteObject("Employee", [lastName:"Mathewson", firstName:"Christine"]);
deleteObject("Employee", [lastName:"Gently", firstName:"Dirck"]);
deleteObject("Employee", [lastName:"Dent", firstName:"Arthur"]);

// Delete old org structure
deleteObject("Organization", [orgName:"MyCloud"]);
deleteObject("Organization", [orgName:"IT"]);
deleteObject("Organization", [orgName:"Administration"]);
deleteObject("Organization", [orgName:"Accounting"]);
deleteObject("Organization", [orgName:"Human Resources"]);
deleteObject("Organization", [orgName:"Operations"]);
deleteObject("Organization", [orgName:"Sales"]);
deleteObject("Organization", [orgName:"Applications"]);
deleteObject("Organization", [orgName:"DBAs"]);
deleteObject("Organization", [orgName:"Infrastructure"]);

// Build up the model root and the main organization: MyCloud
def orgModel = createOrUpdateObject("OrganizationModel",
[name:"OrganizationModel"]);
def cloudOrg = createOrUpdateObject("Organization", [orgName:"MyCloud"]);
orgModel = createOrUpdateObject("OrganizationModel", [name:"OrganizationModel",
organizations:[cloudOrg]]);

// Big Monkey runs MyCloud
def bigMonkey = createOrUpdateObject("Manager", [lastName:"Monkey", firstName:"Big",
jobTitle:"CEO", phoneNumber:"416-555-1212", emailAddress:"big.monkey@mycloud.com",
organization:cloudOrg]);
cloudOrg = createOrUpdateObject("Organization", [orgName:"MyCloud",
orgLeader:bigMonkey]);

// Big Monkey needs a personal assistant
def personalAssistant = createOrUpdateObject("Employee", [lastName:"Chimp",
firstName:"Pamela", jobTitle:"Personal Assistant", phoneNumber:"416-555-1200",
emailAddress:"pamela.chimp@mycloud.com", organization:cloudOrg]);

// MyCloud is a tech company, so IT is an important player
def cloudIT = createOrUpdateObject("Organization", [orgName:"IT"]);
def littleMonkey = createOrUpdateObject("Manager", [lastName:"Monkey",
firstName:"Little", jobTitle:"IT Manager", phoneNumber:"416-555-1213",
emailAddress:"little.monkey@mycloud.com", organization:cloudIT]);
cloudIT = createOrUpdateObject("Organization", [orgName:"IT",
orgLeader:littleMonkey]);
cloudOrg = createOrUpdateObject("Organization", [orgName:"MyCloud",
childOrgs:[cloudIT]]);

bigMonkey = createOrUpdateObject("Manager", [lastName:"Monkey", firstName:"Big",
directReports:[personalAssistant, littleMonkey]]);

// The rest of MyCloud is called "Operations".
def ops = createOrUpdateObject("Organization", [orgName:"Operations"]);
def opsManager = createOrUpdateObject("Manager", [lastName:"Strumpet",
firstName:"Crandell", jobTitle:"VP of Operations", phoneNumber:"416-555-1202",
emailAddress:"crandell.strumpet@mycloud.com", organization:ops]);
Foglight 5.9.x Data Model Guide
Appendix: Groovy scripts

31

ops = createOrUpdateObject("Organization", [orgName:"Operations",
orgLeader:opsManager]);

// Administration
def admin = createOrUpdateObject("Organization", [orgName:"Administration"]);
def adminManager = createOrUpdateObject("Manager", [lastName:"Jo", firstName:"Mo",
jobTitle:"Office Manager", phoneNumber:"416-555-1203",
emailAddress:"mo.jo@mycloud.com", organization:admin]);
admin = createOrUpdateObject("Organization", [orgName:"Administration",
orgLeader:adminManager]);

// Accounting
def accounting = createOrUpdateObject("Organization", [orgName:"Accounting"]);
def accountingManager = createOrUpdateObject("Manager", [lastName:"Skate",
firstName:"Chip", jobTitle:"VP Finance", phoneNumber:"416-555-1250",
emailAddress:"chip.skate@mycloud.com", organization:accounting]);
accounting = createOrUpdateObject("Organization", [orgName:"Accounting",
orgLeader:accountingManager]);

// Human Resources
def hr = createOrUpdateObject("Organization", [orgName:"Human Resources"]);
def hrManager = createOrUpdateObject("Manager", [lastName:"Feelie",
firstName:"Randolph", jobTitle:"Director of Human Resources", phoneNumber:"416-555-
1201", emailAddress:"randolph.feelie@mycloud.com", organization:hr]);
hr = createOrUpdateObject("Organization", [orgName:"Human Resources",
orgLeader:hrManager]);

// Sales
def sales = createOrUpdateObject("Organization", [orgName:"Sales"]);
def salesManager = createOrUpdateObject("Manager", [lastName:"Loman",
firstName:"William", jobTitle:"VP Sales", phoneNumber:"416-555-1400",
emailAddress:"william.loman@mycloud.com", organization:sales]);
sales = createOrUpdateObject("Organization", [orgName:"Sales",
orgLeader:salesManager]);

// Now for the IT subdepartments
// Applications group
def cloudApps = createOrUpdateObject("Organization", [orgName:"Applications"]);
def appManager = createOrUpdateObject("Manager", [lastName:"Joe", firstName:"Jaffa",
jobTitle:"Applications Team Lead", phoneNumber:"416-555-1300",
emailAddress:"jaffa.joe@mycloud.com", organization:cloudApps]);
cloudApps = createOrUpdateObject("Organization", [orgName:"Applications",
orgLeader:appManager]);

// DBA group
def cloudDB = createOrUpdateObject("Organization", [orgName:"DBAs"]);
def dbManager = createOrUpdateObject("Manager", [lastName:"Brickshaw",
firstName:"Rick", jobTitle:"DB Team Lead", phoneNumber:"416-555-1301",
emailAddress:"rick.bricksahw@mycloud.com", organization:cloudDB]);
cloudDB = createOrUpdateObject("Organization", [orgName:"DBAs",
orgLeader:dbManager]);

// SysAdmin group
def cloudInfra = createOrUpdateObject("Organization", [orgName:"Infrastructure"]);
def infraManager = createOrUpdateObject("Manager", [lastName:"Beardly",
firstName:"Sandals", jobTitle:"Infrastructure Team Lead", phoneNumber:"416-555-
1302", emailAddress:"sandals.beardly@mycloud.com", organization:cloudInfra]);
cloudInfra = createOrUpdateObject("Organization", [orgName:"Infrastructure",
orgLeader:infraManager]);

// Attach all the groups together in the org chart
Foglight 5.9.x Data Model Guide
Appendix: Groovy scripts

32

cloudIT = createOrUpdateObject("Organization", [orgName:"IT", childOrgs:[cloudApps,
cloudDB, cloudInfra]]);
cloudOrg = createOrUpdateObject("Organization", [orgName:"MyCloud", childOrgs:[ops,
sales]]);
ops = createOrUpdateObject("Organization", [orgName:"Operations", childOrgs:[admin,
accounting, hr]]);

// Now let's add some reports to the IT groups.
// Apps group has two people
def appsDev1 = createOrUpdateObject("Employee", [lastName:"Nichy",
firstName:"Frederick", jobTitle:"Senior App Support", phoneNumber:"416-555-1354",
emailAddress:"frederick.nichy@mycloud.com", organization:cloudApps]);
def appsDev2 = createOrUpdateObject("Employee", [lastName:"Froyd",
firstName:"Ziggy", jobTitle:"Junior App Support", phoneNumber:"416-555-1355",
emailAddress:"ziggy.froyd@mycloud.com", organization:cloudApps]);
appManager = createOrUpdateObject("Manager", [lastName:"Joe",
firstName:"Jaffa",directReports:[appsDev1, appsDev2]]);

// There are three DBAs
def dbDev1 = createOrUpdateObject("Employee", [lastName:"Bonds",
firstName:"Bartholomew", jobTitle:"Senior DBA", phoneNumber:"416-555-1360",
emailAddress:"bartholomew.bonds@mycloud.com", organization:cloudDB]);
def dbDev2 = createOrUpdateObject("Employee", [lastName:"Ruth", firstName:"Barbie",
jobTitle:"Senior DBA", phoneNumber:"416-555-1361",
emailAddress:"barbie.ruth@mycloud.com", organization:cloudDB]);
def dbDev3 = createOrUpdateObject("Employee", [lastName:"Mathewson",
firstName:"Christine", jobTitle:"Junior DBA", phoneNumber:"416-555-1362",
emailAddress:"christine.mathewson@mycloud.com", organization:cloudDB]);
dbManager = createOrUpdateObject("Manager", [lastName:"Brickshaw",
firstName:"Rick",directReports:[dbDev1, dbDev2, dbDev3]]);

// There are two sysadmins
def infraDev1 = createOrUpdateObject("Employee", [lastName:"Gently",
firstName:"Dirck", jobTitle:"Windows Sysadmin", phoneNumber:"416-555-1303",
emailAddress:"dirck.gently@mycloud.com", organization:cloudInfra]);
def infraDev2 = createOrUpdateObject("Employee", [lastName:"Dent",
firstName:"Arthur", jobTitle:"Unix Sysadmin", phoneNumber:"416-555-3141",
emailAddress:"arthur.dent@mycloud.com", organization:cloudInfra]);
infraManager = createOrUpdateObject("Manager", [lastName:"Beardly",
firstName:"Sandals",directReports:[infraDev1, infraDev2]]);

// Now let's add some random hosts
// Now add some stuff to the services to make them meaningful
// Requires that you have some Host objects
allHosts = #!Host#.getTopologyObjects();
if (allHosts.size() >= 20) {
 createOrUpdateObject("Employee", [lastName:"Nichy", firstName:"Frederick",
ownedItems:[allHosts[0], allHosts[1]]]);
 createOrUpdateObject("Employee", [lastName:"Froyd", firstName:"Ziggy",
ownedItems:[allHosts[2], allHosts[3]]]);
 createOrUpdateObject("Employee", [lastName:"Bonds", firstName:"Bartholomew",
ownedItems:[allHosts[4], allHosts[5]]]);
 createOrUpdateObject("Employee", [lastName:"Ruth", firstName:"Barbie",
ownedItems:[allHosts[6], allHosts[7]]]);
 createOrUpdateObject("Employee", [lastName:"Mathewson", firstName:"Christine",
ownedItems:[allHosts[8], allHosts[9]]]);
 createOrUpdateObject("Employee", [lastName:"Gently", firstName:"Dirck",
ownedItems:[allHosts[10], allHosts[11]]]);
 createOrUpdateObject("Employee", [lastName:"Dent", firstName:"Arthur",
ownedItems:[allHosts[12], allHosts[13]]]);
Foglight 5.9.x Data Model Guide
Appendix: Groovy scripts

33

 createOrUpdateObject("Manager", [lastName:"Joe", firstName:"Jaffa",
ownedItems:[allHosts[14], allHosts[15]]]);
 createOrUpdateObject("Manager", [lastName:"Brickshaw", firstName:"Rick",
ownedItems:[allHosts[16], allHosts[17]]]);
 createOrUpdateObject("Manager", [lastName:"Beardly", firstName:"Sandals",
ownedItems:[allHosts[18], allHosts[19]]]);

}

Foglight 5.9.x Data Model Guide
Appendix: Groovy scripts

34

4

Appendix: Internal database schema

This appendix provides basic information on the internal database used by Foglight.

• acl_class Table

• acl_entry Table

• acl_object_identity Table

• acl_sid Table

• agent_client_defaults Table

• agent_config_binder Table

• agent_dc_manager_schedule_ids Table

• agent_dc_manager_state Table

• agent_manager_state Table

• alarm_alarm Table

• alarm_annotations Table

• alarm_loc_msg Table

• auditing_log Table

• baseline_config Table

• baseline_config_properties Table

• baseline_engine_profile Table

• baseline_observation_profile Table

• cartridge_cartridge_relation Table

• cartridge_components Table

• cartridge_installed_cartridges Table

• cartridge_items Table

• credential_data Table

• credential_lockbox Table

• credential_mapping Table

• credential_mapping_entry Table

• credential_order Table

• credential_policy Table

• current_version Table

• database_instance_id Table

CAUTION: We do not recommend directly accessing the database in your own code or
customizations. The Foglight database schema may change at any time. Upgrading Foglight will not
migrate any customizations you make that reference the database directly.
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

35

• database_version Table

• derivation_calculation Table

• derivation_complex_definition Table

• derivation_definition Table

• fgl4_migration_agent Table

• fgl4_migration_data_span Table

• fgl4_migration_dcm Table

• fgl4_migration_host Table

• fgl4_migration_host_mapping Table

• fgl4_migration_log Table

• fgl4_migration_server Table

• incident_affected_objects Table

• incident_incident Table

• incident_linked_alarms Table

• incident_problem_ticket Table

• incident_problem_tickets Table

• licensing_licenses Table

• mgmt_object_size Table

• mgmt_observation_size Table

• mgmt_timeslice Table

• mgmt_timeslice_data_avail Table

• model_association Table

• model_property_formula Table

• model_query_criteria Table

• obs_binary_* Tables

• obs_metric_aggregate_* Tables

• obs_metric_scalar_* Tables

• obs_string_* Tables

• pcm_encoded_data Table

• persistable_config_model Table

• persistable_script Table

• persistence_column_mapping Table

• persistence_db_column Table

• persistence_db_schema Table

• persistence_db_table Table

• persistence_grouping_policy Table

• persistence_lifecycle Table

• persistence_lifecycle_period Table

• persistence_obs_key_purge_age Table

• persistence_obs_purge Table
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

36

• persistence_obs_purge_age Table

• persistence_observation_index Table

• persistence_operation Table

• persistence_retention_policy Table

• persistence_rollup_progress Table

• persistence_rollup_retry Table

• persistence_storage_config_xml Table

• persistence_storage_manager Table

• persistence_timeslice_table Table

• persistence_topobj_purge_age Table

• persistence_type_hierarchy Table

• registry_performance_calendar Table

• registry_registry_value Table

• registry_registry_variable Table

• report_output Table

• report_schedule Table

• rule_action_handler Table

• rule_action_message Table

• rule_action_registry_reference Table

• rule_action_variable_reference Table

• rule_blackout_schedules Table

• rule_effective_schedules Table

• rule_expression Table

• rule_firing_strategy Table

• rule_messages Table

• rule_rule Table

• rule_sev_to_clear_actn_hndlr Table

• rule_sev_to_fire_actn_hndlr Table

• rule_severity Table

• rule_severity_expression Table

• rule_severity_messages Table

• schedule_named_schedule Table

• script_annt Table

• script_annt_attr Table

• script_argument Table

• script_argument_annt Table

• script_argument_annt_attr Table

• script_example Table

• script_return_annt Table

• script_return_annt_attr Table
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

37

• sec_group Table

• sec_group_nesting Table

• sec_group_role_match Table

• sec_grouprole Table

• sec_jaas_source Table

• sec_object Table

• sec_object_mask Table

• sec_object_permission Table

• sec_object_type Table

• sec_permission Table

• sec_permission_def Table

• sec_policy Table

• sec_resource Table

• sec_role Table

• sec_user_alias Table

• sec_user_obj_permission Table

• sec_user_res_permission Table

• sec_usergroup Table

• sec_userrole Table

• sec_x_attribute Table

• sec_x_attribute_value Table

• tagging_service_mapping Table

• threshold_bound Table

• threshold_config Table

• topology_activity_calendar Table

• topology_activity_upgrade Table

• topology_object Table

• topology_object_history Table

• topology_property Table

• topology_property_annotation Table

• topology_property_history Table

• topology_property_name Table

• topology_property_value Table

• topology_service_state Table

• topology_type Table

• topology_type_annotation Table

• topology_type_history Table

• upgrade_pending_operations Table

• wcf_groups_by_cartridges Table

• wcf_resources Table
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

38

acl_class Table
Spring security ACL Table: defines the domain object types to which ACLs apply.

acl_entry Table
Spring security ACL Table: stores the ACL permissions which apply to a specific object identity and security
identity.

acl_object_identity Table
Spring security ACL Table: stores the object identity definitions of specific domain object.

Table 1. acl_class Table

Fields

id The primary key

class Java® class name of the object

Table 2. acl_entry Table

Fields

id The primary key

sid Security identity

acl_object_identity ACL object identity

ace_order Ace order

mask Mask

granting A flag to indicate whether permission is granted

audit_success A flag to indicate whether audit success

audit_failure A flag to indicate whether audit failure

Table 3. acl_object_identity Table

Fields

id The primary key

entries_inheriting
A flag to indicate whether parent ACL entries inherit into the
current ACL

object_id_class Object class ID

object_id_identity Object identity

parent_object Parent object

owner_sid ACL object owner security identity
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

39

acl_sid Table
Spring security ACL Table: stores the security identities recognized by the ACL system.

agent_client_defaults Table
Holds information about the default agent management client.

agent_config_binder Table
Records the binding between agents and agent configurations.

agent_dc_manager_schedule_ids Table
Links agent data collection (a.k.a. blackout) schedules to agents (many-to-one).

Table 4. acl_sid Table

Fields

id The primary key

sid Security identity

principal A flag to indicate whether security identity is principal

Table 5. agent_client_defaults Table

Fields

acd_holder_id Identifies the kind of default agent management client

acd_host_name The host name of the agent management client

acd_local_id The ID of the agent management client (unique within the host)

Table 6. agent_config_binder Table

Fields

config_id Unique ID of agent configuration binding

adapter Namespace of the agent

agent_type Type of the agent

agent_name Name of the agent

known_config_name Known name of the agent configuration

resolved_config_uuid ID of the agent configuration bond to the agent

Table 7. agent_dc_manager_schedule_ids Table

Fields

magentid Agent ID

scheduleid Schedule ID
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

40

agent_dc_manager_state Table
Holds information about the pre-configured agent data collection states.

agent_manager_state Table
Holds various information about agents (one agent per row).

Table 8. agent_dc_manager_state Table

Fields

magentid Agent ID

mdatacollectiondisabled
A flag indicating whether data collection should be disabled (1)
or enabled (0) for the associated agent

Table 9. agent_manager_state Table

Fields

mid Agent ID

mnamespace Agent’s namespace

magentname Agent’s name

moriginalname
Whether the name is original (1) or it was modified (0) to bring
it into compliance with agent name restrictions

madapterjmxname The JMX name of the agent adapter that manages this agent

madaptername Agent adapter’s short name

magenttype Agent type

mactivated Whether the agent has been activated (1) or not (0)

mactivatable Whether the agent can be activated (1) or not (0) in principle

mfromtemplate Not used

mhostname The last known host name of this agent

mobsolete Whether the agent is obsolete (1) or not (0)

mhidden Whether the agent is hidden (1) or not (0)

magentdisplayname Agent’s display name

magentversion The last known version of this agent

magentbuildid The last known build number of this agent

mremotehomehostname
The last known host name of the agent manager that controls
this agent

mremotehomelocalid The last known ID of the agent manager that controls this agent

mremotehomedisplayname
The last known display name of the agent manager that controls
this agent
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

41

alarm_alarm Table
Holds alarm data.

alarm_annotations Table
Holds alarm annotations.

Table 10. alarm_alarm Table

Fields

alarm_id Alarm ID (sequential)

id Alarm UUID

source_id The ID of the entity (e.g. a rule) that produced the alarm

message The alarm’s default message

topology_object_id
The ID of the topology object associated with this alarm
(UUID)

is_cleared Whether the alarm has been cleared (1) or not (0)

is_acknowledged Whether the alarm has been acknowledged (1) or not (0)

cleared_time Alarm clearing time

created_time Creation time

severity Alarm’s severity code

cleared_by Description of the entity that cleared the alarm (e.g. user name)

ack_time Acknowledgement time

ack_by
Description of the entity that acknowledged the alarm (e.g. user
name)

source_name Name of the entity that created the alarm (e.g. rule name)

rule_id The ID of the related rule, if the alarm was created by a rule

user_defined_data Extra alarms data specified by the creator of the alarm

auto_ack
Indicates whether a user has instructed the server to
acknowledge this alarm and certain related alarms
automatically

Table 11. alarm_annotations Table

Fields

annotation_id Alarm annotation ID (UUID)

text Annotation text

username The name of the user that created this annotation

created_time Annotation creations time

alarm_id The UUID of the annotated alarm
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

42

alarm_loc_msg Table
Holds localized alarm messages.

auditing_log Table
Holds auditing information.

baseline_config Table
Holds baseline computation configuration (one per row).

Table 12. alarm_loc_msg Table

Fields

alarm_id UUID of an alarm

message Localized message

locale Locale ID (according to Java® conventions)

Table 13. auditing_log Table

Fields

id Auditing Record ID

name Name of the related entity

service Internal name of the related service

method Internal name of the related method

entity_id ID of the related entity

user_name
Name of the user whose credentials were in effect during the
operation

time Operation invocation time

data Extra auditing data

old_version Old version of the related entity (before the operation)

new_version New version of the related entity (after the operation)

service_id Internal ID of the related service

Table 14. baseline_config Table

Fields

bc_version_id The version ID of this baseline configuration

bc_id The ID of this baseline configuration

bc_cartridge_name
The name of the cartridge from which this baseline
configuration was deployed

bc_cartridge_version
The version of the cartridge from which this baseline
configuration was deployed
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

43

baseline_config_properties Table
Holds extra properties for baseline configurations (many-to-one), references baseline_config.

baseline_engine_profile Table
Holds general engine-specific computation data for baseline engines.

baseline_observation_profile Table
Holds observation-specific computation data for baseline engines.

bc_created_timestamp Baseline configuration creation/modification timestamp

bc_user_created
Whether this configuration was created/edited by a user (1) or
whether it is still the same as it was in the cartridge (0)

bc_name Baseline configuration name

bc_type Baseline configuration name

bc_type_version The version of this baseline configuration type

bc_topology_query
The topology query used to select objects for baselining using
this configuration

bc_observation_name The name of the observation/metric to be baselined

Table 15. baseline_config_properties Table

Fields

bcp_version_id The version ID of this baseline configuration

bcp_name Property name

bcp_value Property value

bcp_index Property position withing the whole property list (zero-based)

Table 16. baseline_engine_profile Table

Fields

bep_engine_id The name of the baseline engine using the table

bep_tag
A tag provided by the engine to look up individual pieces of
profile information

bep_data The data stored by the engine

Table 14. baseline_config Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

44

cartridge_cartridge_relation Table
Records relationships (dependency, incompatibility etc.) between cartridges.

cartridge_components Table
Records components in cartridges.

Table 17. baseline_observation_profile Table

Fields

bop_object_id The ID of the topology object for which this data was computed

bop_observation_name The name of the observation for which this data was computed

bop_config_id
The identifier of the baseline configuration for which this data
was computed

bop_tag
A tag provided by the baseline engine to identify individual
pieces of profile information

bop_data An opaque blob of data stored by the baseline engine

Table 18. cartridge_cartridge_relation Table

Fields

relationship_id Unique ID of the relationship

relationship_type Type of the relationship

related_cartridge_name Name of the related cartridge

related_cartridge_version Version of the related cartridge

dependency_match
The method for the relationship to match different version of
related cartridges

cartridge_id ID of the cartridge that has the relationship

relationship_index
The index of the relation in the list of relationships that the
cartridge has

Table 19. cartridge_components Table

Fields

component_id Unique ID of the component

component_id_name Name of the component

cartridge_version Version of the component

cartridge_build_id Build ID of the component

component_id_creation_date Creation date of the component

component_id_author Author of the component

component_type Type of the component
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

45

cartridge_installed_cartridges Table
Records cartridges installed in the server.

cartridge_items Table
Records items in cartridge components.

component_deployed If the component has been deployed

federate_deploy_type How the component should be deployed in federation setup

component_domain Domain of the component

component_deployment_item_n
ame

The name of the item for deployment in the component

attributes Attributes of the component

cartridge_id ID of the cartridge that the component belongs to

component_index
The index of the component in the list of components that the
cartridge has

Table 20. cartridge_installed_cartridges Table

Fields

cartridge_id Unique ID of the cartridge

cartridge_name Name of the cartridge

cartridge_version Version of the cartridge

cartridge_build_id Build ID of the cartridge

cartridge_creation_date Creation date of the cartridge

cartridge_author Author of the cartridge

cartridge_foglight_version Minimal version of Forge server required by the cartridge

cartridge_final_flag If the cartridge is still in development

cartridge_hash_algorithm Hashing algorithm used when constructing the cartridge

cartridge_deployed If the cartridge has been deployed

cartridge_pending_dependency
If the cartridge is waiting for a cartridge that it depends on to be
enabled

cartridge_type Type of the cartridge

cartridge_domain Domain of the cartridge

classloading_style Class loading style to use for the cartridge

Table 19. cartridge_components Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

46

credential_data Table
Holds encrypted credentials (one per row).

credential_lockbox Table
Holds information about credential lockboxes.

Table 21. cartridge_items Table

Fields

item_id Unique ID of the item

item_type Type of the item

item_name Name of the item

item_size Size in byte of the item

item_hash Hashcode of the time

item_source Source location for the item

item_directory Directory in which the item resides

component_id ID of component that the item belongs to

item_index Index of the item in the list of items that the component has

Table 22. credential_data Table

Fields

cd_lockbox_id
The ID of the lockbox that contains the credential varchar(36)
not null

cd_id Credential ID

cd_type Credential type

cd_purpose Not used

cd_name Credential name

cd_direct_access
Whether direct access to the secret part of this credential is
allowed to agents (this flag is duplicated in the encrypted
properties)

cd_properties Secret credential properties (encrypted)

cd_index Credential position within the lockbox (zero-based)

Table 23. credential_lockbox Table

Fields

cl_id Lockbox ID

cl_name Lockbox name
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

47

credential_mapping Table
Holds information about which credentials have resource mappings.

credential_mapping_entry Table
Holds credential resource mapping data.

credential_order Table
Defines a global partial order across all credentials.

cl_open_pwd_enc
The encrypted version of the lockbox password if the lockbox
is “open”

cl_enc_algorithm Encryption algorithm (for public/private key cryptography)

cl_key_format The format of public and private key byte arrays

cl_public_key The public key for this lockbox

cl_private_key_lb
The private key for this lockbox (encrypted with the lockbox
password)

Table 24. credential_mapping Table

Fields

cme_credential_id Credential ID

cme_lockbox_id Lockbox ID

Table 25. credential_mapping_entry Table

Fields

cme_credential_id Credential ID

cme_record_id Resource mapping record ID

cme_field_id Resource mapping field ID

cme_condition_type Resource mapping condition type

cme_value Resource mapping model/test value

cme_negated Whether this condition is negated (1) or not (0)

cme_null_matches
Whether null values provided in credential queries should
match this condition (1) or not (0)

cme_index Position of this condition within the record (zero-based)

Table 23. credential_lockbox Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

48

credential_policy Table
Holds credential policy data.

current_version Table
Holds information about the current version of various server configuration items.

database_instance_id Table
Holds internal ID of the Management Server database.

Table 26. credential_order Table

Fields

co_credential_id Credential ID

co_index
Position (zero-based); smaller values mean higher
position/priority

Table 27. credential_policy Table

Fields

cp_lockbox_id Lockbox ID

cp_id Policy ID

cp_credential_id Credential ID

cp_type Policy type

cp_critical Whether the policy is critical (1) or not (0)

cp_properties Policy properties

cp_index
Policy position within the list of all policies for the associated
credential (zero-based)

Table 28. current_version Table

Fields

id UUID of a configuration item

version_id UUID of a particular version of the configuration item

is_user_created
Whether this version was created/modified by a user (1) or not
(0)

service Internal ID of the service that uses the configuration item
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

49

database_version Table
Holds information about the current version of this database schema, and contains the history of database schema
versions (history of upgrades) since first install.

derivation_calculation Table
Records calculations in complex derivation definition.

derivation_complex_definition Table
Records complex derivation definitions.

Table 29. database_instance_id Table

Fields

col_index Primary key (internal)

instance_id Database instance UUID

Table 30. database_version Table

Fields

dbv_version The database schema version number

dbv_date_applied The date that the server was upgraded to this version

Table 31. derivation_calculation Table

Fields

calculation_id Unique ID of the calculation

description Description of the calculation

domain_query
Query that determines all the topology objects that the
calculation applies to

expression Expression used for calculation

trigger_type Way the trigger the calculation

firing_interval Interval in seconds for a time-driven calculation to be triggered

trigger_without_data
If a time-driven or schedule-driven calculation should be
triggered without new metric data that affects the calculation

schedule_trigger_timing
How a schedule-driven calculation should be triggered based
on the starting and ending of the schedule

triggering_schedule The schedule that triggers a schedule-driven calculation

derivation_version_id
The version ID of the complex derivation definition that
contains the calculation

calculation_index
Index of the calculation in the list of calculations that the
complex derivation definition
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

50

derivation_definition Table
Records simple derivation definitions, which is used only in older versions of Management Server and is now
deprecated.

fgl4_migration_agent Table
This table is related to Foglight 4 migration functionality, and is no longer in use.

fgl4_migration_data_span Table
This table is related to Foglight 4 migration functionality, and is no longer in use.

fgl4_migration_dcm Table
This table is related to Foglight 4 migration functionality, and is no longer in use.

fgl4_migration_host Table
This table is related to Foglight 4 migration functionality, and is no longer in use.

fgl4_migration_host_mapping Table
This table is related to Foglight 4 migration functionality, and is no longer in use.

Table 32. derivation_complex_definition Table

Fields

version_id Unique version ID of derivation definition

id ID of derivation definition

created Creation time of the derivation definition

user_created If this version of derivation definition is modified by user

cartridge_name Name of cartridge that defines the derivation definition

cartridge_version Version of cartridge that defines the derivation definition

property_name Name of the observation the derivation is defined for

comments Description of the derivation definition

value_type Type of return value of the derivation definition

unit_name Unit of the return value of the derivation definition
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

51

fgl4_migration_log Table
This table is related to Foglight 4 migration functionality, and is no longer in use.

fgl4_migration_server Table
This table is related to Foglight 4 migration functionality, and is no longer in use.

incident_affected_objects Table
Holds UUIDs of topology objects related a particular incident.

incident_incident Table
Holds incident data.

Table 33. incident_affected_objects Table

Fields

incident_id Incident ID

object_id Topology Object UUID

Table 34. incident_incident Table

Fields

incident_id Incident ID

reported_start The start time of the incident

reported_end The end time of the incident

severity Incident’s severity

message Incident’s message

start_time The time when the incident was reported to FMS

end_time The time when the incident was closed in FMS

created_by
Description of the entity that reported the incident (e.g. user
name)

acknowledged_by
Description of the entity that acknowledged the incident (e.g.
user name)

acknowledged_time Acknowledgement time

ended_by
Description of the entity that closed the incident (e.g. user
name)

last_updated The time when this incident report was last updated

last_updated_by
Description of the entity that updated the incident last (e.g. user
name)
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

52

incident_linked_alarms Table
Holds IDs of alarms related to a particular incident.

incident_problem_ticket Table
Holds problem ticket data.

incident_problem_tickets Table
Holds IDs of problem tickets related to a particular incident.

licensing_licenses Table
Holds installed licenses’ data.

type Incident type

parent ID if the parent incident (if applicable)

Table 35. incident_linked_alarms Table

Fields

incident_id Incident ID

alarm_id Alarm ID

Table 36. incident_problem_ticket Table

Fields

id Problem ticket ID

source_id ID of the source of this problem ticket

ticket_number Problem ticket number

status Problem ticket status

updated_by
Description of the entity that updated the problem ticket (e.g.
user name)

ticket_url URL associated with the problem ticket

created_time Problem ticket creation time

Table 37. incident_problem_tickets Table

Fields

incident_id Incident ID

ticket_id Problem ticket ID

Table 34. incident_incident Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

53

mgmt_object_size Table
Records size information for topology objects.

mgmt_observation_size Table
Records the size of data persisted for objects in timeslices.

Table 38. licensing_licenses Table

Fields

serial Serial number of a licence

license The licence file data

license_installed The time when the license was installed

is_deleted Whether the license has been deleted (1) or not (0)

Table 39. mgmt_object_size Table

Fields

mobj_object_id The topology object ID

mobj_topology_rows The number of topology rows used by the object

mobj_topology_total_rows The total number of rows used by the object and its dependents

mobj_topology_agg_rows
The total number of rows used by the object and its contained
objects

mobj_memory_size The size of the object in-memory

mobj_memory_total_size
The total size in memory of the topology object and its
dependents

mobj_memory_agg_size
The total size in memory of the topology object and its
contained objects

mobj_observation_rows The number of observation rows persisted for the object

mobj_observation_total_rows
The total number of observation rows used by the object and its
dependents

mobj_observation_agg_rows
The total number of observation rows used by the objects and
its contained objects

mobj_observation_size The total size of the observations persisted for the object

mobj_observation_total_size
The total size of observations persisted for the object and its
dependents

mobj_observation_agg_size
The total size of observations persisted for the object and its
contained objects
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

54

mgmt_timeslice Table
Stores the summary information for individual timeslices.

mgmt_timeslice_data_avail Table
Stores the details of which observations have data stored in particular timeslices.

Table 40. mgmt_observation_size Table

Fields

mobs_id The primary key

mobs_timeslice_id The timeslice ID

mobs_object_id The topology object ID

mobs_number_rows
The number of observation rows stored for the object in the
timeslice

mobs_total_number_rows
The number of observation rows stored for the object and its
dependents in this timeslice

Table 41. mgmt_timeslice Table

Fields

mt_id The primary key

mt_timeslice_id The timeslice ID

mt_generation The timeslice generation

mt_storage_type The storage type

mt_start_time The timeslice start time

mt_end_time The timeslice end time

mt_number_rows The number of rows in the timeslice

mt_size The size of the timeslice

mt_rollup_timestamp The timestamp of the last rollup performed on the timeslice

mt_purge_age
The timestamp of the last purge operation performed on the
timeslice

Table 42. mgmt_timeslice_data_avail Table

Fields

mda_id The primary key

mda_timeslice_id The timeslice ID

mda_data_availability A BLOB containing the data availability information
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

55

model_association Table
Stores the model association configuration.

model_property_formula Table
Stores the details of how to produce a topology property value in a model association configuration.

model_query_criteria Table
Stores the details of a criteria query used in a model association configuration.

Table 43. model_association Table

Fields

ma_version_id The version ID

ma_id The ID of the model association configuration

ma_name The name of the model association configuration

ma_create_source
A flag to indicate whether the source object should be created
for the association when target objects are found

ma_update_delay
The delay before processing the association after being notified
of a possible change

ma_source The ID of the query used to find source objects

ma_created_timestamp The timestamp at which the configuration was created

ma_is_user_created A flag that indicates whether the configuration is user edited

ma_cartridge_name The name of the cartridge that contained the configuration

ma_cartridge_version The version of the cartridge that contained the configuration

Table 44. model_property_formula Table

Fields

mpf_id The ID of the formula

mpf_type
Indicates whether this is a constant value, topology query,
criteria query or an instance-specific query

mpf_constant_value The value used for constant property values

mpf_query_text The query used for topology query formulas

mpf_topology_type The topology type used for criteria queries

mpf_property The property that holds the query for instance specific queries

mpfm_assoc_id The model association ID

mpfm_property_name The property that the formula applies to
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

56

obs_binary_* Tables
Tables to store the values of ComplexObservations.

obs_metric_aggregate_* Tables
Tables to store aggregate metric values.

Table 45. model_query_criteria Table

Fields

mqc_id The primary key

mqc_name The property name

mqc_comparator The comparator used in the query

mqc_value The value against which the property is compared

mqc_query_id The ID of the property formula

mqc_index integer The index position of this criteria query in the property formula

Table 46. obs_binary_* Tables

Fields

ob_id The primary key

ob_object_id The topology object ID

ob_observation_id The observation property ID

ob_start_time The start time

ob_end_time The end time

ob_sampled_period The sampled period

ob_root The summary information for the observation

ob_value The observation value

Table 47. obs_metric_aggregate_* Tables

Fields

oma_id The primary key

oma_object_id The topology object ID

oma_observation_id The observation property ID

oma_start_time The start time

oma_end_time The end time

oma_sampled_period The sampled period

oma_count The number of source values in the aggregate

oma_sum The sum of the metrics
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

57

obs_metric_scalar_* Tables
Tables to store scalar metric values.

obs_string_* Tables
Tables to store string observation values.

oma_min The minimum value in the aggregate

oma_max The maximum value in the aggregate

oma_sum_squares The sum of squares

Table 48. obs_metric_scalar_* Tables

Fields

oms_id The primary key

oms_object_id The topology object ID

oms_observation_row The observation index row

oms_end_time The end time

oms_sampled_period The sampled period

oms_obs_0 The column 0 value

oms_obs_1 The column 1 value

oms_obs_2 The column 2 value

oms_obs_3 The column 3 value

oms_obs_4 The column 4 value

oms_obs_5 The column 5 value

oms_obs_6 The column 6 value

oms_obs_7 The column 7 value

oms_obs_8 The column 8 value

oms_obs_9 The column 9 value

Table 49. obs_string_* Tables

Fields

os_id The primary key

os_object_id The topology object ID

os_observation_id The observation property ID

os_start_time The start time

Table 47. obs_metric_aggregate_* Tables

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

58

pcm_encoded_data Table
Records encoded agent configuration.

persistable_config_model Table
Record agent configuration.

os_end_time The end time

os_sampled_period The sampled period

os_index The value index

os_value The observation value

Table 50. pcm_encoded_data Table

Fields

version_id
The version ID of the agent configuration this encoded data
belongs to

encoded_data Encoded compressed agent configuration

Table 51. persistable_config_model Table

Fields

version_id Unique version ID of the agent configuration

id ID of the agent configuration

created Creation time for the agent configuration

user_created If the agent configuration is created/modified by user

is_clone
If the agent configuration is a clone from other agent
configuration

adapter Name space of the agent configuration

encoding_system Encoding system used by the agent configuration

config_type Type of the agent configuration

config_qualifier Qualifier of the agent configuration

sharing_name Sharing name of the agent configuration

agent_type Agent type of the agent configuration

known_name Known name of the agent configuration

type_id ID of the type of the agent configuration

identify_by_known_name If the agent configuration is identified by its known name

cartridge_name Name of the cartridge this agent configuration comes from

Table 49. obs_string_* Tables

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

59

persistable_script Table
Holds scripts deployed into Management Server.

persistence_column_mapping Table
Records the column mapping details of a grouping policy.

cartridge_version Version of the cartridge this agent configuration comes from

is_agent_volatile If the agent configuration is modified by agent itself

Table 52. persistable_script Table

Fields

config_version_id
The version ID of the configuration item that contains this
script

config_id The entity ID of the configuration item that contains this script

namespace_name Script’s namespace

java_class_name The name of the associated Java® class (if applicable)

script_name Script name

script_descr Script description

script_text Actual body of the script (if not backed by a Java® class)

language_specifier Identifies the script’s programming language

tc_created_timestamp The time when the script was deployed

tc_is_user_created Whether the script was created/edited by a user (1) or not (0)

tc_cartridge_name The name of the associated cartridge

tc_cartridge_version The version of the associated cartridge

return_type The declared return value type

return_description Plain text description of the return value

Table 53. persistence_column_mapping Table

Fields

cm_id The primary key

cm_grouping_policy_id The grouping policy ID

cm_column_name The column name

cm_expression The expression used to produce the column value

cm_observation_property The observation property used to populate the column

cm_aggregation The aggregation function applied to the observation

Table 51. persistable_config_model Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

60

persistence_db_column Table
Records the details of a column in a table used in a grouping policy.

persistence_db_schema Table
Records the details of a schema configured for use in a grouping policy.

persistence_db_table Table
Records the details of a table used in a grouping policy.

cm_observation_alias The alias used for the observation property

cm_units_name The units in which the observation value is stored

cm_is_identity Flag indicating whether the property is an identity property

Table 54. persistence_db_column Table

Fields

col_id The primary key

col_table_id The ID of the table

col_name The column name

col_sql_expr The SQL expression used to produce the column value

col_aggregation_fn The aggregation function used when rolling up the property

Table 55. persistence_db_schema Table

Fields

schema_version_id The version ID

schema_id The ID of the schema configuration

schema_name The schema name

schema_created_timestamp The timestamp at which the configuration was created

schema_is_user_created Flag indicating whether the configuration was user edited

schema_cartridge_name The cartridge from which the configuration originated

schema_cartridge_version The version of the originating cartridge

Table 56. persistence_db_table Table

Fields

tbl_id The primary key

tbl_schema_id The ID of the containing schema

Table 53. persistence_column_mapping Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

61

persistence_grouping_policy Table
Records the configuration of a grouping policy.

persistence_lifecycle Table
Records the configuration of a lifecycle used to control the rollup and purging of data.

tbl_name The table name

tbl_max_size The maximum size of the table

tbl_low_water_mark The high water mark for the table size

tbl_high_water_mark The low water mark for the table size

tbl_auto_increment_col The auto-increment column in the table

tbl_end_time_col The name of the column that stores the end-time

tbl_start_time_col The name of the column that stores the start-time

Table 57. persistence_grouping_policy Table

Fields

gp_version_id The ID of the policy version

gp_id The grouping policy ID

gp_name The grouping policy name

gp_schema_id The ID of the schema to which the policy applies

gp_table_name The name of the table into which the policy writes data

gp_lifecycle_id
The lifecycle used to control the rollup and purging of the
inserted data

gp_scoping_expr The scoping query for objects processed by the policy

gp_period The period (in milliseconds) with which the policy inserts data

gp_conditional_expr
The conditional expression used to determine whether data is to
be inserted for an object

gp_discriminator
The SQL expression used to identify records in the target table
that are processed by this policy

gp_created_timestamp The time at which the policy was created

gp_is_user_created A flag indicating whether the policy was user edited

gp_cartridge_name The name of the cartridge that deployed the policy

gp_cartridge_version The version of the cartridge that deployed the policy

Table 56. persistence_db_table Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

62

persistence_lifecycle_period Table
Records the configuration of a rollup/purge period in a lifecycle.

persistence_obs_key_purge_age Table
A “temporary” table used during purge operations.

persistence_obs_purge Table
Records the details of user-initiated observation purge operations.

Table 58. persistence_lifecycle Table

Fields

lc_version_id The version ID

lc_id The lifecycle ID

lc_name The lifecycle name

lc_public
A flag indicating whether the lifecycle is “public” and available
for use outside of the containing cartridge

lc_created_timestamp The timestamp at which the configuration was created

lc_is_user_created A flag indicating whether the configuration is user-edited

lc_cartridge_name The name of the cartridge that deployed the configuration

lc_cartridge_version The version of the cartridge that deployed the configuration

Table 59. persistence_lifecycle_period Table

Fields

lp_id The primary key

lp_age The age (in milliseconds) at which the rollup should occur

lp_granularity
The granularity (in milliseconds) to which the data should be
aggregated

lp_lifecycle_id The ID of the lifecycle that contains the period

Table 60. persistence_obs_key_purge_age Table

Fields

okp_object_id The object ID

okp_observation_id The observation ID

okp_purge_age The purge age
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

63

persistence_obs_purge_age Table
A “temporary” table used during a purge operation to store the purge age of an observation property.

persistence_observation_index Table
Records the details of how observations are mapped to scalar metric tables.

persistence_operation Table
Records the progress of long running operations performed on observation tables.

Table 61. persistence_obs_purge Table

Fields

pop_id The primary key

pop_topology_query The topology query that selects the objects that are to be purged

pop_purge_age The purge age (in milliseconds)

pop_created_by_user The user that created the purge operations

pop_created_timestamp The time at which the operation was created

Table 62. persistence_obs_purge_age Table

Fields

popa_id The primary key

popa_type_id The topology type ID

popa_observation_id The observation property ID

popa_is_property_override
Flag indicating whether the purge age is from a property-
specific retention policy

popa_purge_age The purge age (in milliseconds)

Table 63. persistence_observation_index Table

Fields

poi_id The primary key

poi_type_id The topology type ID

poi_property_id The observation property ID

poi_row integer The row to which the observation is mapped

poi_column The column to which the observation is mapped
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

64

persistence_retention_policy Table
Records the details of retention policy configuration.

persistence_rollup_progress Table
Records the progress of a rollup operation.

Table 64. persistence_operation Table

Fields

po_id The primary key

po_version The version

po_operation_type The type of operation being performed

po_start_time The time that the operation was initiated

po_details The details of the operation

Table 65. persistence_retention_policy Table

Fields

rp_version_id The version ID

rp_id The retention policy ID

rp_name The retention policy name

rp_type_name The topology type to which the policy applies

rp_object_id
The unique Id of the topology object to which the policy
applies

rp_property_name
The name of the observation property to which the policy
applies

rp_cache_duration
The minimum duration (in milliseconds) that values have to
remain in the cache

rp_lifecycle_id The ID of the lifecycle that controls the observations

rp_created_timestamp The timestamp at which the policy was created

rp_is_user_created A flag indicating whether the policy is user-edited

rp_cartridge_name The cartridge name

rp_cartridge_version The cartridge version

Table 66. persistence_rollup_progress Table

Fields

prp_id The primary key

prp_handler The handler performing the rollup

prp_start_time The start time of the rollup time range
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

65

persistence_rollup_retry Table
Records retry operations that are to be performed to rollup observations.

persistence_storage_config_xml Table
Stores the observation storage configuration.

persistence_storage_manager Table
Records the details of the master storage manager operating in the cluster.

prp_end_time The end time of the rollup time range

prp_partition The partition being rolled up

prp_lifecycle_id The lifecycle being rolled up

prp_property_based
Indicates whether the progress of property-based rollups is
being tracked

prp_custom_rollup
Indicates whether the progress of custom rollups is being
tracked

prp_last_object_id The ID of the last object processed by the rollup

Table 67. persistence_rollup_retry Table

Fields

prr_id The primary key

prr_handler The handler that will perform the operation

prr_start_time The start time of the rollup

prr_end_time The end time of the rollup

prr_partition The partition being rolled up

prr_number_attempts The number of attempts that have been performed

prr_batch_details The details of the rollup operation

Table 68. persistence_storage_config_xml Table

Fields

pscx_id The configuration ID

pscx_version The configuration version

pscx_xml The configuration

Table 66. persistence_rollup_progress Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

66

persistence_timeslice_table Table
Records the details of the observation tables used by the server.

persistence_topobj_purge_age Table
Records the purge age of various topology objects.

persistence_type_hierarchy Table
A “temporary” table that records the details of the topology type hierarchy.

Table 69. persistence_storage_manager Table

Fields

psm_id The primary key

psm_last_updated The last heartbeat timestamp

psm_primary_node The name of the current master node in the cluster

Table 70. persistence_timeslice_table Table

Fields

ptt_id The ID

ptt_partition The partition to which the table maps

ptt_storage_type The storage type

ptt_generation The generation in which the table resides

ptt_start_time The start time of the table’s timeslice

ptt_end_time The end time of the table’s timeslice

ptt_table_name The table name

ptt_table_suffix The table name suffix (e.g. “0001”)

Table 71. persistence_topobj_purge_age Table

Fields

ptpa_object_id The object ID

ptpa_purge_age The purge age

Table 72. persistence_type_hierarchy Table

Fields

pth_id The primary key

pth_type_id The type ID

pth_super_type The ID of the type’s supertype
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

67

registry_performance_calendar Table
Record performance calendars defined in registry values.

registry_registry_value Table
Records registry values defined in registry variables.

registry_registry_variable Table
Records registry variables.

Table 73. registry_performance_calendar Table

Fields

performance_calendar_id Unique ID of the performance calendar

value Value of the performance calendar

schedule Schedule used for the performance calendar

value_id ID of registry value that this performance calendar belongs to

performance_calendar_index
Index of this performance calendar in the list of performance
calendars contained by the registry value

Table 74. registry_registry_value Table

Fields

value_id Unique ID of the registry value

value_type Type of the registry value

user_created If the registry value is created by user

default_value Value of the registry value

topology_object_id The unique ID of the topology object that the value is bond to

topology_type The topology type that the value is bond to

registry_variable_version_id The version ID of the registry variable that the value is for

Table 75. registry_registry_variable Table

Fields

version_id Unique version ID of the registry variable

id The ID of the registry variable

created The time the registry variable is created

user_created If the registry variable is created/modified by user

cartridge_name The name of the cartridge that the registry variable comes from

cartridge_version
The version of the cartridge that the registry variable comes
from
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

68

report_output Table
Table to store the output of reports.

report_schedule Table
Table to store the details of a scheduled report.

domain_name The name of the domain the registry variable belongs to

name Name of the registry variable

class_name The Java® class name for the value of the registry variable

comments Description of the registry variable

Table 76. report_output Table

Fields

ro_id The primary key

ro_report_schedule_id The schedule report ID

ro_date_run The timestamp that the report was run on

ro_error_message
Any error message that was encountered when running the
report

ro_size The report size

ro_data The report file

ro_report_type The report type

ro_report_id The report ID

ro_user_name The user that scheduled the report

ro_report_format The report format

ro_email_recipients The email addresses of recipients

ro_report_name The report name

ro_man_gen A flag indicating whether the report was manually generated

ro_report_params The report parameters

Table 77. report_schedule Table

Fields

rs_version_id The version ID

rs_id The ID of the scheduled report

rs_name The name of the scheduled report

rs_schedule_id The ID of the schedule used to run the report

Table 75. registry_registry_variable Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

69

rule_action_handler Table
Records actions that are associated with rules’ conditions.

rule_action_message Table
Records the messages that are associated with rules’ actions.

rs_num_results_retained The number of report results that are to be retained

rs_is_disabled A flag indicating whether the report has been disabled

rs_created_timestamp The timestamp on which the report configuration was created

rs_is_user_created
Flag indicating whether the scheduled report has been user
edited

rs_cartridge_name The cartridge name

rs_cartridge_version The cartridge version

rs_report_type The report type

rs_report_id The report ID

rs_user_name The name of the user that created the schedule report

rs_report_format The report format

rs_email_recipients The email addresses of the report’s recipients

rs_report_name The name of the report

rs_report_params The report parameters

Table 78. rule_action_handler Table

Fields

id A unique identifier for each action

action The name of the action that will be executed

description A description of the action

Table 79. rule_action_message Table

Fields

handler_id
The identifier of the action handler from rule_action_handler
this message is bound to

message_name The display name of this message

message_text The text contents of this message

Table 77. report_schedule Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

70

rule_action_registry_reference Table
Records a reference to a registry variable that will be used by the action handler.

rule_action_variable_reference Table
Records a variable that can be used by a particular rule action.

rule_blackout_schedules Table
A table used to tie together rules with their blackout schedules.

rule_effective_schedules Table
A table used to tie together rules with their effective schedules.

Table 80. rule_action_registry_reference Table

Fields

handler_id
The identifier of the action handler from rule_action_handler
this reference is bound to

name The display name of this reference

registry_variable_name The name of the registry variable referred to

Table 81. rule_action_variable_reference Table

Fields

handler_id
The identifier of the action handler from rule_action_handler
this reference is bound to

name The display name of this variable

variable_name The name of the rule expression this variable is bound to

Table 82. rule_blackout_schedules Table

Fields

rule_version_id The version-specific identifier of the rule included in this link

schedule_id
The identifier of a blackout schedule that should be applied to
the provided rule

Table 83. rule_effective_schedules Table

Fields

rule_version_id The version-specific identifier of the rule included in this link

schedule_id
The identifier of a schedule controlling when this rule should
be active
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

71

rule_expression Table
A table containing expressions that can be referred to by other parts of the rule.

rule_firing_strategy Table
Contains data that describes how rules should fire.

rule_messages Table
Contains data that will be used in alarms generated by the rule.

rule_rule Table
The main entry point for rules. Each row represents a particular instance of a rule. Changes to a rule result in a
new entry being written so that historical values can be located.

Table 84. rule_expression Table

Fields

rule_version_id The version-specific identifier of the rule included in this link

name The display name of this expression

text The text contents of this expression

Table 85. rule_firing_strategy Table

Fields

id
An identifier that can be used to look up this particular firing
strategy

rule_version_id The version-specific identifier of the rule included in this link

type The type of firing strategy represented by this row

delay_period
The amount of time that should be waited before the rule
begins to fire

monitor_window_size
The number of hits that should be considered with a hit rate
firing strategy

monitor_hit_threshold
The number of hits that must be detected before the rule’s
condition evaluates to true

Table 86. rule_messages Table

Fields

rule_version_id The version-specific identifier of the rule included in this link

name The display name of this message

text The text contents of this message
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

72

rule_sev_to_clear_actn_hndlr Table
A table used to link up a rule’s severities with the actions that should be executed when the severity’s condition no
longer holds.

Table 87. rule_rule Table

Fields

rule_version_id The version-specific identifier of this rule

type The type of rule represented by this row

id
A global identifier used to refer to this rule (does not change
with each version)

created A timestamp indicating when this rule was created

name The display name of this rule

comments A description of what this rule does

is_external Indicates whether this rule came from an external source or not

is_user_created
Indicates whether or not this rule was created or modified by
the user

trigger_without_data
Indicates whether or not the rule’s conditions should be tested
even if new data has not arrives

trigger_type The type of triggering strategy used by this rule

query_text
A topology query describing which objects this rule should
monitor (for data-driven rules)

cartridge_name The name of the cartridge this rule was shipped in (can be null)

cartridge_version The version of the cartridge this rule was shipped in

domain_name
The name of the domain this containing objects this rule should
be interested in

actions_suspended_till
A time (in the future) that this rule’s actions will be suspended
until (null if actions are not suspended)

alarms_suspended_till
A time (in the future) that this rule’s alarms will be suspended
until (null if alarm generation is not suspended)

help Help text describing how this rule should be used

triggering_event
The name of the event (for event-driven rules) that will cause
this rule’s conditions to be evaluated

triggering_schedule
The identifier of the schedule (for schedule-driven rules) that
will cause this rule’s conditions to be evaluated

is_suspended
Indicates whether or not this rule is suspended (suspended rules
are never evaluated)

firing_interval How frequently this rule should fire (for time-driven rules)
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

73

rule_sev_to_fire_actn_hndlr Table
A table used to link up a rule’s severities with the actions that should execute when the severity becomes true.

rule_severity Table
A table containing the different severity levels possible in rules.

rule_severity_expression Table
An expression linked to a severity that can be referred to by the rule’s action handlers.

Table 88. rule_sev_to_clear_actn_hndlr Table

Fields

severity_id The identifier of the severity linked to the clear action handler

handler_id
The identifier of the action handler that should run when the
linked severity is no longer true

Table 89. rule_sev_to_fire_actn_hndlr Table

Fields

severity_id The identifier of the severity linked to a fire action handler

handler_id
The identifier of the action handler that should run when the
severity’s condition becomes true

Table 90. rule_severity Table

Fields

id The identifier of this severity

type The type of severity (simple or conditional)

severity_level
The level of this severity: undefined (-1), normal (0), fire (1),
warning (2), critical (3), or fatal (4)

is_disabled Bit indicating whether or not this severity has been disabled

message_name The display name of the message associated with this severity

message_text The text of this severity’s message

condition_name The display name of this rule’s condition

condition_text
The Groovy script that will be executed when evaluating this
condition

rule_version_id The version-specific identifier of this rule
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

74

rule_severity_messages Table
An message linked to a severity that can be referred to by the rule’s action handlers.

schedule_named_schedule Table
Records schedules.

script_annt Table
Holds annotations on deployed scripts.

Table 91. rule_severity_expression Table

Fields

severity_id The identifier of the severity to which this expression is bound

name The display name of this expression

text The contents of this expression

Table 92. rule_severity_messages Table

Fields

severity_id The identifier of the severity to which this message is bound

name The display name of this message

text The contents of this message

Table 93. schedule_named_schedule Table

Fields

version_id Unique version ID of the schedule

id ID of the schedule

created Creation time of the schedule

user_created If the schedule is created/modified by user

cartridge_name The name of the cartridge that the schedule comes from

cartridge_version The version of the cartridge that the schedule comes from

name Name of the schedule

description Description of the schedule

auto_removed
If the schedule should be removed automatically when it
expires

schedule The XML definition of the schedule
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

75

script_annt_attr Table
Holds attributes of script annotations.

script_argument Table
Holds script argument declarations.

script_argument_annt Table
Holds script argument annotations.

Table 94. script_annt Table

Fields

annt_id Annotation ID

name Annotation name

value Annotation value

script_id UUID of the annotated script

Table 95. script_annt_attr Table

Fields

annt_id Annotation ID

name Annotation attribute name

value Attribute value

Table 96. script_argument Table

Fields

arg_id Argument ID

name Argument name

type Argument type

description Argument description

optional Whether the argument is optional (1) or not (0)

metric Not used

script_id Associated script ID

position Argument’s position
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

76

script_argument_annt_attr Table
Holds attributes of script argument annotations.

script_example Table
Holds script usage examples.

script_return_annt Table
Holds script return value annotations.

Table 97. script_argument_annt Table

Fields

annt_id Annotation ID

name Annotation name

value Annotation value

arg_id Argument ID

Table 98. script_argument_annt_attr Table

Fields

annt_id Annotation ID

name Annotation attribute name

value Attribute value

annt_id Annotation ID

Table 99. script_example Table

Fields

script_id Script ID

example_usage Script usage example (plain text)

description Script description

Table 100. script_return_annt Table

Fields

annt_id Annotation ID

name Annotation name

value Annotation value

script_id Script ID
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

77

script_return_annt_attr Table
Holds attributes of script return value annotations.

sec_group Table
Holds information about security group.

sec_group_nesting Table
Holds information about security group nesting relation.

sec_group_role_match Table
The table was used to create a relation map of external group name and internal Foglight role name, and is no
longer in use.

sec_grouprole Table
Security group and security role many-to-many association table.

Table 101. script_return_annt_attr Table

Fields

annt_id Annotation ID

name Annotation attribute name

value Attribute value

Table 102. sec_group Table

Fields

groupuuid The primary key

groupname Group name

groupdesc Group description

jasssourceid JAAS source ID

isbuiltingroup A flag indicating whether group is built in

ishidden A flag indicating whether group is hidden

Table 103. sec_group_nesting Table

Fields

groupuuid Parent group UUID

childgroupuuid Child group UUID
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

78

sec_jaas_source Table
Holds information about JAAS source.

sec_object Table
Holds information about security object.

Table 104. sec_grouprole Table

Fields

groupuuid Security group UUID

roleuuid Security role UUID

Table 105. sec_jaas_source Table

Fields

jaassourceuuid JAAS source ID

jaassourcename JAAS source name

jaasauthtype JAAS source authentication type

jaassourcedesc JAAS source description

isservicesource A flag indicating whether it is service source

isdefaultextsource A flag indicating whether it is default external source

Table 106. sec_object Table

Fields

objuuid Security object UUID

objname Security object name

objdesc Security object description

createdby The user created this security object

modifiedby The user modified this security object recently

deletedby The user deleted this security object

objtypeuuid Security object type UUID

createdts Security object create time stamp

modifiedts Security object modify time stamp

deletedts Security object delete time stamp

owneruuid Owner UUID

groupuuid Group UUID

ownerperm Owner permission

groupperm Group permission
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

79

sec_object_mask Table
Holds information about security object mask.

sec_object_permission Table
Holds information about security object permission.

sec_object_type Table
Holds information about security object type.

otherperm Other permission

isdeleted A flag indicating whether the security object is deleted

useruuid User UUID

Table 107. sec_object_mask Table

Fields

groupuuid Group UUID

objtypeuuid Object type UUID

ownerperm Owner permission

groupperm Group permission

otherperm Other permission

Table 108. sec_object_permission Table

Fields

roleuuid Security role UUID

objuuid Security object UUID

permdesc Permission description

accessperm Access permission

accesstype Access type

Table 109. sec_object_type Table

Fields

objtypeuuid Security object type UUID

objtypename Security object type name

objtypedesc Security object type description

objclassname Security object class name

Table 106. sec_object Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

80

sec_permission Table
Holds information about security permission.

sec_permission_def Table
Holds information about spring security ACL permission.

sec_policy Table
Holds information about security policy.

objfactoryclassname Security object factory class name

objcreationmethodname Security object creation method name

Table 110. sec_permission Table

Fields

roleuuid Security role UUID

resuuid Security resource UUID

permdesc Permission description

accessperm Access permission

accesstype Access type

Table 111. sec_permission_def Table

Fields

id The primary key

name Permission name

displayName Permission display name

description Permission description

domain Permission domain (for example, topology domain name)

cartridgeName The name of cartridge where permission is defined

cartridgeVersion The name of cartridge where permission is defined

defaultValue Default value

hidden A flag indicating whether the permission is hidden

Table 109. sec_object_type Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

81

sec_resource Table
Holds information about security resource.

sec_role Table
Holds information about security role.

sec_user_alias Table
Holds information about security user alias information.

sec_user_obj_permission Table
Holds information about security user object permission information.

Table 112. sec_policy Table

Fields

policykey Security policy key

policyvalue Security policy value

Table 113. sec_resource Table

Fields

resuuid Security resource UUID

resname Security resource name

resdesc Security resource description

restypeid Security resource type

Table 114. sec_role Table

Fields

roleuuid The primary key

rolename Security role name

roledesc Security role description

isbuiltinrole A flag indicating whether the security role is built in

Table 115. sec_user_alias Table

Fields

useralias User alias

username User name

isdeleted A flag indicating whether user is deleted
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

82

sec_user_res_permission Table
Holds information about security user resource permission information.

sec_usergroup Table
Security user and security group many-to-many association table.

sec_userrole Table
Security user and security role many-to-many association table.

Table 116. sec_user_obj_permission Table

Fields

useruuid Security user UUID

objuuid Security object UUID

permdesc Permission description

accessperm Access permission

accesstype Access type

Table 117. sec_user_res_permission Table

Fields

useruuid Security user UUID

resuuid Security resource UUID

permdesc Permission description

accessperm Access permission

accesstype Access type

Table 118. sec_usergroup Table

Fields

groupuuid Security group UUID

useruuid Security user UUID

Table 119. sec_userrole Table

Fields

roleuuid Role UUID

useruuid User UUID
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

83

sec_x_attribute Table
The table is related to security attribute, and is no longer in use.

sec_x_attribute_value Table
The table is related to security attribute value, and is no longer in use.

tagging_service_mapping Table
Holds various object tags.

threshold_bound Table
A table containing the boundary conditions used in thresholds.

Table 120. tagging_service_mapping Table

Fields

mobjectid Object ID

mtype Object type

mtag Tag

Table 121. threshold_bound Table

Fields

tb_id A unique identifier for each threshold bound instance

tb_type
Describes the type of threshold bound contained in this row
(affects which columns are expected to be present)

tb_state
The enumeration object instance used to represent this
threshold’s state

tb_is_inclusive
A flag indicating whether the boundary value is included in the
threshold itself

tb_is_override
A flag indicating whether this threshold should override any
previously exceeded thresholds

tb_constant_value
The value incoming metrics will be compared against in
constant thresholds

tb_registry_variable
The name of the registry variable that incoming metrics will be
compared against (for registry threshold bounds)

tb_metric
The name of the metric that will be compared against this
threshold boundary

tb_num_std_deviations
The number of standard deviations the incoming metric must
remain within before this boundary is exceeded (for standard
deviation boundaries)
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

84

threshold_config Table
A table containing threshold configurations (each of which contains zero or more bounds).

topology_activity_calendar Table
Records the activity calendar used to track the activity of topology objects.

tb_baseline_config_id
The identifier of the baseline configuration incoming metrics
will be compared to

tb_bound_id The identifier of this bound

tb_threshold_id The identifier of the threshold this bound belongs to

tb_index An index used to sort threshold boundaries during comparisons

Table 122. threshold_config Table

Fields

tc_version_id
The version-specific identifier of this threshold configuration,
which changes each time the threshold is saved

tc_id The version-agnostic identifier of this threshold configuration

tc_topology_type The name of the topology type this threshold will apply to

tc_observation_property The name of the property this threshold represents

tc_enum_type The type of enumeration that describes this threshold’s state

tc_created_timestamp A timestamp representing when this threshold was created

tc_is_user_created
A flag indicating whether this threshold was created by the user
or shipped in a cartridge

tc_cartridge_name The name of the cartridge containing this threshold

tc_cartridge_version
The version of the cartridge this threshold configuration was
shipped in

Table 123. topology_activity_calendar Table

Fields

tac_id The calendar ID

tac_start_time The start time

tac_end_time The end time

tac_activity_current_day Bitmask for the current day

tac_activity_current_day_excl Exclusion bitmask

tac_activity_prev_day_0 Bitmask for previous day

tac_activity_prev_day_0_excl Exclusion bitmask

Table 121. threshold_bound Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

85

topology_activity_upgrade Table
Table to store activity details of an object being upgraded.

topology_object Table
Stores the details of topology objects.

tac_activity_prev_day_1 Bitmask for previous day

tac_activity_prev_day_1_excl Exclusion bitmask

tac_activity_daily Bitmask for daily activity

tac_activity_daily_excl Exclusion bitmask

tac_activity_weekly Bitmask for weekly activity

tac_activity_weekly_excl Exclusion bitmask

Table 124. topology_activity_upgrade Table

Fields

tau_object_id The object ID

tau_activity_current_day Activity for current day

tau_activity_prev_day_0 Activity for a previous day

tau_activity_prev_day_1 Activity for a previous day

tau_activity_daily Daily activity

tau_activity_weekly Weekly activity

Table 125. topology_object Table

Fields

to_id The object ID

to_type The object type

to_unique_id The unique ID

to_object_name The object’s name

to_object_name_hash A hash of the object’s name

to_last_updated Last updated timestamp

to_activity_day_number The day relative to which activity details are stored

to_activity_current_day Activity bitmask for the current day

to_activity_prev_day_0 Activity bitmask for the previous day

to_activity_prev_day_1 Activity bitmask for the calendar day two days ago

Table 123. topology_activity_calendar Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

86

topology_object_history Table
Stores the history information for topology objects.

topology_property Table
Stores the details of a property defined on a topology type.

topology_property_annotation Table
Stores the details of annotations defined on topology properties.

to_activity_daily Daily activity bitmask

to_activity_weekly Weekly activity bitmask

Table 126. topology_object_history Table

Fields

toh_id The history record ID

toh_type The object’s type

toh_object_id The object’s ID

toh_unique_id The object’s unique ID

toh_version The version

toh_effective_start_date The date at which the version came into effect

toh_effective_end_date The date at which the version is no longer effective

toh_num_changes
The number of changes that were made to the object in this
version

Table 127. topology_property Table

Fields

tp_id The property ID

tp_containing_type The ID of the containing type

tp_name_id The property name ID

tp_name The property name

Table 128. topology_property_annotation Table

Fields

tpa_id The primary key

tpa_type The type

Table 125. topology_object Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

87

topology_property_history Table
Stores the details of changes made to a topology property.

topology_property_name Table
Table that stores unique property names.

topology_property_value Table
Table that stores the property values of topology objects.

tpa_property The property ID

tpa_annotation The annotation type

tpa_index The value index

tpa_value The value

Table 129. topology_property_history Table

Fields

tph_id The primary key

tph_containing_type The ID of the containing type

tph_property The property ID

tph_type The property type

tph_description The description

tph_is_identity Flag indicating whether the property is an identity property

tph_is_containment Flag indicating whether the property is a containment property

tph_is_many Flag indicating whether the property is a list property

tph_default_value The default value

tph_unit_name The units for the property

Table 130. topology_property_name Table

Fields

tpn_id The property name ID

tpn_name The property name

Table 128. topology_property_annotation Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

88

topology_service_state Table
Stores the runtime state information for the topology service.

topology_type Table
Stores the details of topology types.

topology_type_annotation Table
Stores the details of annotations attached to topology types.

Table 131. topology_property_value Table

Fields

pv_id The primary key

pv_object The object ID

pv_property The property

pv_effective_start_date The timestamp at which the property value came into effect

pv_effective_end_date
The timestamp at which the property value was no longer
effective

pv_index The property value index

pv_value The property value

pv_reference_id The reference ID for the value

Table 132. topology_service_state Table

Fields

tss_service The service name

tss_state The state

Table 133. topology_type Table

Fields

tt_id The type ID

tt_name The type name

Table 134. topology_type_annotation Table

Fields

tta_id The primary key

tta_type The type ID

tta_annotation The annotation type ID
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

89

topology_type_history Table
Stores the history of changes made to topology types.

upgrade_pending_operations Table
Table used for upgrades to keep track of operations that need to be performed on the server.

wcf_groups_by_cartridges Table
Records the association between WCF modules and cartridges that contain them.

tta_index The value index

tta_value The value

Table 135. topology_type_history Table

Fields

tth_id The history record ID

tth_type_id The type ID

tth_name The type name

tth_class_name The implementation class name

tth_version The type version

tth_effective_start_date The history record’s start date

tth_effective_end_date The history record’s end date

tth_cartridge_name The name of the associated cartridge

tth_cartridge_version The cartridge version

tth_domain_name The domain to which the type belongs

tth_super_type The ID of the super type

Table 136. upgrade_pending_operations Table

Fields

upo_name The operation name

upo_service_name The service that will perform this operation

upo_trigger_event The event that will trigger the operation to run

upo_operation_class The name of the Java® class that implements the operation

Table 134. topology_type_annotation Table

Fields
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

90

wcf_resources Table
Records WCF resources.

Table 137. wcf_groups_by_cartridges Table

Fields

wcf_res_group Qualified name of the WCF module

cartridge_id Identifier of the cartridge

Table 138. wcf_resources Table

Fields

wcf_res_id Unique ID of the WCF resource

wcf_res_group Qualified name of the WCF module

wcf_res_name Name of the WCF resource

wcf_res_data Binary data of the WCF resource
Foglight 5.9.x Data Model Guide
Appendix: Internal database schema

91

About Us
We are more than just a name
We are on a quest to make your information technology work harder for you. That is why we build community-
driven software solutions that help you spend less time on IT administration and more time on business innovation.
We help you modernize your data center, get you to the cloud quicker and provide the expertise, security and
accessibility you need to grow your data-driven business. Combined with Quest’s invitation to the global
community to be a part of its innovation, and our firm commitment to ensuring customer satisfaction, we continue
to deliver solutions that have a real impact on our customers today and leave a legacy we are proud of. We are
challenging the status quo by transforming into a new software company. And as your partner, we work tirelessly to
make sure your information technology is designed for you and by you. This is our mission, and we are in this
together. Welcome to a new Quest. You are invited to Join the Innovation™.

Our brand, our vision. Together.
Our logo reflects our story: innovation, community and support. An important part of this story begins with the letter
Q. It is a perfect circle, representing our commitment to technological precision and strength. The space in the Q
itself symbolizes our need to add the missing piece — you — to the community, to the new Quest.

Contacting Quest
For sales or other inquiries, visit www.quest.com/contact.

Technical support resources
Technical support is available to Quest customers with a valid maintenance contract and customers who have trial
versions. You can access the Quest Support Portal at https://support.quest.com.

The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours a
day, 365 days a year. The Support Portal enables you to:

• Submit and manage a Service Request.

• View Knowledge Base articles.

• Sign up for product notifications.

• Download software and technical documentation.

• View how-to-videos.

• Engage in community discussions.

• Chat with support engineers online.

• View services to assist you with your product.
Foglight 5.9.x Data Model Guide
About Us

92

www.quest.com/contact
https://support.quest.com

	The Foglight data model
	What are models?
	Who needs to know about models?
	Modeling process overview

	Where can I see the models?
	Topology type definitions in XML
	Schema browser
	Data dashboard

	How are models organized?
	Where can I see the data model hierarchy?
	What internal models are created?
	What other models are created?
	What is in “Model Roots”?
	How are Foglight 4 agents represented?
	Why might I need to navigate models?
	How do I create a model?
	How do I delete a model?

	What are domains?
	Example: the Host Model structure

	What is a data source?
	What are “KnowledgeItems”?

	Data modeling tutorials
	Modeling example: The org chart
	Defining the org structure types
	Populating the model using a script
	Connecting “Employees” to Host objects
	Visualizing the data

	Appendix: Groovy scripts
	createOrg Groovy script

	Appendix: Internal database schema
	acl_class Table
	acl_entry Table
	acl_object_identity Table
	acl_sid Table
	agent_client_defaults Table
	agent_config_binder Table
	agent_dc_manager_schedule_ids Table
	agent_dc_manager_state Table
	agent_manager_state Table
	alarm_alarm Table
	alarm_annotations Table
	alarm_loc_msg Table
	auditing_log Table
	baseline_config Table
	baseline_config_properties Table
	baseline_engine_profile Table
	baseline_observation_profile Table
	cartridge_cartridge_relation Table
	cartridge_components Table
	cartridge_installed_cartridges Table
	cartridge_items Table
	credential_data Table
	credential_lockbox Table
	credential_mapping Table
	credential_mapping_entry Table
	credential_order Table
	credential_policy Table
	current_version Table
	database_instance_id Table
	database_version Table
	derivation_calculation Table
	derivation_complex_definition Table
	derivation_definition Table
	fgl4_migration_agent Table
	fgl4_migration_data_span Table
	fgl4_migration_dcm Table
	fgl4_migration_host Table
	fgl4_migration_host_mapping Table
	fgl4_migration_log Table
	fgl4_migration_server Table
	incident_affected_objects Table
	incident_incident Table
	incident_linked_alarms Table
	incident_problem_ticket Table
	incident_problem_tickets Table
	licensing_licenses Table
	mgmt_object_size Table
	mgmt_observation_size Table
	mgmt_timeslice Table
	mgmt_timeslice_data_avail Table
	model_association Table
	model_property_formula Table
	model_query_criteria Table
	obs_binary_* Tables
	obs_metric_aggregate_* Tables
	obs_metric_scalar_* Tables
	obs_string_* Tables
	pcm_encoded_data Table
	persistable_config_model Table
	persistable_script Table
	persistence_column_mapping Table
	persistence_db_column Table
	persistence_db_schema Table
	persistence_db_table Table
	persistence_grouping_policy Table
	persistence_lifecycle Table
	persistence_lifecycle_period Table
	persistence_obs_key_purge_age Table
	persistence_obs_purge Table
	persistence_obs_purge_age Table
	persistence_observation_index Table
	persistence_operation Table
	persistence_retention_policy Table
	persistence_rollup_progress Table
	persistence_rollup_retry Table
	persistence_storage_config_xml Table
	persistence_storage_manager Table
	persistence_timeslice_table Table
	persistence_topobj_purge_age Table
	persistence_type_hierarchy Table
	registry_performance_calendar Table
	registry_registry_value Table
	registry_registry_variable Table
	report_output Table
	report_schedule Table
	rule_action_handler Table
	rule_action_message Table
	rule_action_registry_reference Table
	rule_action_variable_reference Table
	rule_blackout_schedules Table
	rule_effective_schedules Table
	rule_expression Table
	rule_firing_strategy Table
	rule_messages Table
	rule_rule Table
	rule_sev_to_clear_actn_hndlr Table
	rule_sev_to_fire_actn_hndlr Table
	rule_severity Table
	rule_severity_expression Table
	rule_severity_messages Table
	schedule_named_schedule Table
	script_annt Table
	script_annt_attr Table
	script_argument Table
	script_argument_annt Table
	script_argument_annt_attr Table
	script_example Table
	script_return_annt Table
	script_return_annt_attr Table
	sec_group Table
	sec_group_nesting Table
	sec_group_role_match Table
	sec_grouprole Table
	sec_jaas_source Table
	sec_object Table
	sec_object_mask Table
	sec_object_permission Table
	sec_object_type Table
	sec_permission Table
	sec_permission_def Table
	sec_policy Table
	sec_resource Table
	sec_role Table
	sec_user_alias Table
	sec_user_obj_permission Table
	sec_user_res_permission Table
	sec_usergroup Table
	sec_userrole Table
	sec_x_attribute Table
	sec_x_attribute_value Table
	tagging_service_mapping Table
	threshold_bound Table
	threshold_config Table
	topology_activity_calendar Table
	topology_activity_upgrade Table
	topology_object Table
	topology_object_history Table
	topology_property Table
	topology_property_annotation Table
	topology_property_history Table
	topology_property_name Table
	topology_property_value Table
	topology_service_state Table
	topology_type Table
	topology_type_annotation Table
	topology_type_history Table
	upgrade_pending_operations Table
	wcf_groups_by_cartridges Table
	wcf_resources Table

	About Us
	We are more than just a name
	Our brand, our vision. Together.
	Contacting Quest
	Technical support resources

